Lt

:
Bitemporality and the
Art of Maintaining

Accurate Databases

August 10 @ 12 noon ET (17:00 UK)

JUXT

L.

Agenda

1/ The state of things — time is intrinsic to data
2/ What is bitemporality

3/ SQL:2011 - “temporal tables”

4/ Challenges for users, developers & vendors
5/ How we can embrace bitemporality

JUXT

The moving Image
of eternity.

Reality Is messy.

Business domains are understood and encoded gradually,
therefore good design happens through iteration

Successful systems evolve to cope with inevitable and
unpredictable delays, mistakes and changes

Software must capture complex business processes with
“adjustments”, “corrections”, “exceptions”

“we want what's recorded in the system to match the real
world” — Kent Beck, 2023

...and so do industry auditors & regulators!

Software Design: Tidy First?

BUSINESS ARCHITECTURE

Eventual Business Consistency

Executive Summary of Bi-temporality
KENT BECK
4 AUG 2023
Q 76 0D 17 Share

I'm a geek speaking to you, a technology-savvy executive, about why we are doing
things in a more complicated way than seems necessary. You may have heard the word
“bi-temporal”. What’s that about?

In a nutshell, we want what’s recorded in the system to match the real world. We know
this is impossible (delays, mistakes, changes) but are getting as close as we can. The
promise is that if what’s in the system matches the real world as closely as possible,

costs go down, customer satisfaction goes up, & we are able to scale further faster.

Here’s how it works.

Scenarios

We’ll take addresses as our example. Addresses are useful for sending correspondence,

calculating taxes, determining regulations, & targeting marketing. Addresses, though,

Q + Subscribe Sign in

https://tidyfirst.substack.com/p/eventual-business-consistency

https://tidyfirst.substack.com/p/eventual-business-consistency

“If what'’s in the system matches the real world as closely
as possible, costs go down, customer satisfaction goes up,
& we are able to scale further faster”

But databases are (still) optimized for ‘now’.

* Transactional applications are routinely built on
databases that were not designed for the modern
era of ~infinite storage

* Applications are carefully designed to “remember”
and “forget” information in various ways —
remembering things is harder than it should be!

e Stale data has to be migrated to keep acceptable
performance

JxMz-tyicgo

https://www.youtube.com/watch?v

le+09

1le+07 |

le+06 }

100000

10000

Price USD / MB

Losing data is bad for business.

0.0001

le-05

Historical Cost of Computer Memory and Storage

1000 |
100

10 |

UPDATE Considered Harmful

e

=
le+08

ey

T

™"

pey——

T

-

T

§0|8 pue wn|eddN 1
Aq payda|jod ejeqQ

W,

Flip-Flops |
Core
ICs on boards
SIMMs
DIMMs
Big drives
Floppy drives
Small drives
Flash sticks / cards
SSDs

abeloys/32u 0|9y

Vs

\x

I

3 i
$:
1 L

x 1
L 1 1

1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

P Pl o) 300/2603

"UPDATE Considered Harmful" by Jeremy Taylor

S
593 subscribers

5 15

(y1 ~> Share

J Download

& clip

=4 Save

https://www.youtube.com/watch?v=JxMz-tyicgo

10

Image credit: programiz.com

Table: Customers

customer_id first_name last_name age country
1 John Doe 31 USA
2 Robert Luna 22 USA
3 David Robinson 22 UK
4 John Reinhardt 25 UK
5 Betty Doe 28 UAE
v
UPDATE Customers
SET first_name = ‘Johnny’
WHERE customer_id=1;
v
customer_id first_name last_name age country
1 Johnny Doe 31 USA
2 Robert Luna 22 USA
3 David Robinson 22 UK
4 John Reinhardt 25 UK
5 Harry Potter 31 USA

11

Image credit: programiz.com

Table: Customers

customer_id first_name last_name age country
1 John Doe 31 USA
2 Robert Luna 22 USA
3 David Robinson 22 UK
4 John Reinhardt 25 UK
5 Betty Doe 28 UAE
v
UPDATE Customers
SET first_name = ‘Johnny’
WHERE customer_id=1; ,uohn"
v
customer_id first_name last_name age country
1 Johnny Doe 31 USA
2 Robert Luna 22 USA
3 David Robinson 22 UK
4 John Reinhardt 25 UK
5 Harry Potter 31 USA

4

~
.

Table: Customers

customer_id first_name last_name age country
1 John Doe 31 USA
2 Robert Luna 22 USA
3 David Robinson 22 UK
4 John Reinhardt 25 UK
5 Betty Doe 28 UAE

v

UPDATE Customers
SET first_name = ‘Johnny’
WHERE customer_id=1;

: 4
customer_id first_name last_name age country %

W
1 Johnny Doe 31 USA “
2 Robert Luna 22 USA
3 David Robinson 22 UK
4 John Reinhardt 25 UK
)) 5 Harry Potter 31 USA
12 Image credit: programiz.com

13

Living without data version control?!

14

How can we incorporate time & history
Into databases that operate with ‘now’?

32156009

https://news.ycombinator.com/item?id

Soft deletion probably isn't worth it (brandur.org)
654 points by [fittl 64 days ago | hide | past | favorite | 497 comments

A JohnBooty 64 days ago | next [-]

I've been a software dev since the 90s and at this point, I've learned to basically do things like audit trails and soft deletion by default, unless
there's some reason not to.

Somebody always wants to undelete something, or examine it to see why it was deleted, or see who changed something, or blah blah blah. It
helps the business, it helps you as developer by giving you debug information as well as helping you to cover your ass when you are blamed
for some data loss bug that was really user error.

Soft deletion has obvious drawbacks but is usually far less work than implementing equivalent functionality out-of-stream, with verbose logging
or some such.

Retrofitting your app and adding soft deletion and audit trails after the fact is usually an order of magnitude more work. Can always add it pre-
launch and leave it turned off.

If performance is a concern, this is usually something that can be mitigated. You can e.g. have a reaper job that runs daily and hard-deletes
everything that was soft-deleted more than n days ago, or whatever.

A gmiller123456 64 days ago | parent | next [-]

The author uses the "no one ever undeleted anything" as the primary justification. | think this is the part they miss. I've never undeleted
a user either, but there have been many times I've gone back to look at something. Either a complaint finally gets around to me as to
why the user wanted their account deleted (e.g. feature not working) and it helps to figure out why. Or they're returning and want things
set up like they were. Or someone is taking over their roll and needs to be set up like the last person who's already gone.

Though you really shouldn't be relying on a database for an audit trail. It might help find some issues, but things actually used for
security shouldn't be writable so easily.

A JohnBooty 63 days ago | root | parent | next []

https://news.ycombinator.com/item?id=32156009

954393

https://news.ycombinator.com/item?id

1¢

A The trouble with soft delete (richarddingwall.name)

37 points by concretecode on Nov 21, 2009 | hide | past | favorite | 19 comments

patio11 on Nov 21, 2009 | next [-]
A million inserts into a table a year is causing performance problems? Assuming 200 work days and all accesses being in a four hour period
that is about one row inserted every three seconds. DBs are not my bag, baby, but that presumably should not be killing you.

At the day job, when we do a soft delete as defined here, we tend to create a view of the active rows in the table. Accessing through the view
rather than the table prevents many of the "Whoopsie, missed a WHERE clause, now I'm summing over deleted records" errors. I'm told it also
improves performance but take anything | say about DBs with a grain of salt.

A bmjon Nov 21, 2009 | parent | next [-]

We use soft deletes in our system (primarily because we have to maintain all data), and we use views to retrieve results. The views also
flatten the data a bit, joining appropriate tables, which again simplifies queries.

russell on Nov 21, 2009 | prev | next [-]
Dingwall lumps a number of separate issues under "soft delete": undo, audit trails, soft create, and performance in the presence of historical
data. He presents several solutions, not all of which | would buy.

The is_deleted column is a pretty simple solution that we all use and there are a number of solutions to the problem of retrieving only the active
columns, such as views.

Audit trails and performance are more interesting. A while back | worked for a web analytics company and we had the problem of the storage
and performance costs of historical data. Only the 5% of the data was of any real interest, but the 95% historical data made writes slow
because of the large number of indexes. They adopted the solution of historical tables with fewer indexes on cheaper drives.

| like the solution of serializing historical, deleted, and audit data and storing them in a NonSQL database of your choice. Then you can bring
them back as individual undos, or into a data mining database for scenario playing.

| dont particularly like his suggestion of creating separate tables for each state of an element. | think that's needless complexity.

https://news.ycombinator.com/item?id=954393

= https://richarddingwall.name/2009/11/20/the-trouble-with-soft-delete/

A The trouble with soft delete (richarddingwall.name)

37 pOintS by Concr-x---_.l- SN AN NAAR L S S S SN eSS e AN S S ST 0ES

A

patio11 on Nov

A million insel
that is about ¢

At the day jok
rather than th
improves pert

A bmjon

We us
flatten

russell on Nov .

Dingwall lumg
data. He pres

The is_delete
columns, sucl

Audit trails an
and performa
because of th

Isn’t this all overkill?

Probably. If you're already using soft delete and haven't had any problems then you don't need
to worry — soft delete was a sensible trade-off for your application that hasn't caused any

serious issues so far.

But if you're anticipating growth, or already encountering scalability problems as dead bodies
pile up in your database, you might like to look at alternatives that better satisfy your
application’s requirements.

The truth is soft delete is a poor solution for most of the problems it promises to solve. Instead,
focus on what you're actually trying to achieve. Keep everything simple and follow these
guidelines:

L lPrimary transactional tables should only contain data that is valid and active right now.
Do you really need to be able to undo deletes? If so, there are dedicated patterns to handle this.
Audit logging at the row level sucks. Do it higher up where you know the full story.
If a row doesn't apply yet, put it in a queue until it does.
Physically separate items in different states based on their query usage,

Above all, make sure you're not gold plating tables with soft delete simply out of habit!

a four hour period
ou.

1g through the view
errors. I'm told it also

esults. The views also

'sence of historical

rieving only the active

blem of the storage
le writes slow
es.

| like the solution of serializing historical, deleted, and audit data and storing them in a NonSQL database of your choice. Then you can bring
them back as individual undos, or into a data mining database for scenario playing.

| dont particularly like his suggestion of creating separate tables for each state of an element. | think that's needless complexity.

https://richarddingwall.name/2009/11/20/the-trouble-with-soft-delete/

M) Shubham Sonawane C*
[Jun 30,2021 - 7minread - © Listen

Soft deletes are tedious! Does an ideal deletion
without loss even exist?

18

Factor Details
Soft Delete is easier to implement since it merely involves updating a
Ease of Setup |column while hard delete would also involve copying the data to be
deleted to an audit table.
4 Soft Delete makes it easy to debug data issues due to the deleted flag.
Dby Ing | oy ing via. tha AUt tabla = ke eas | Rossiblal Soits a el bia
It is extremely easy to restore data ‘deleted’ via soft delete since it just
Restoring data |involved unsetting the deleted flag. Soft Delete
However note that restoring data is an extremely rare occurance.
Qhering for Extra deletion checks are required for Select and Update queries.
.ry 9 Developers must exercise caution or else they risk retrieving results that| Hard Delete
active data A
have been deleted. (might not apply to ORMs)
Having all the data in the tables as active data relates to view simplicity.
View Simplicity |In Hard delete, all ‘deleted’ data will only be present in the audit table |Hard Delete
while the rest of the tables in the system will have ‘active’ data.
Porformance of Update is a little faster than delete.
e So soft delete should technically be faster than hard delete (which also | Soft Delete
P ? has the audit table insert to consider).
To support soft deletes, ALL select queries need to have a flagged
Application condition
Paf In sut‘ufmons where JOINs are involved there will be multiple such C
(Speed) conditions.
Select queries with lesser conditions are faster than those with
conditions.
- To support faster soft deletes, we need to have an index for every
Application |\ ed fiag in EVERY table
P rm Hard Delete
erl;gizea)nce Additionally the table size keeps increasing since the table has ‘soft
deleted’ data + active data.
Additionally we cannot update the old soft deleted entry of A1-B1
Unique Index |since it would mean rewriting some data which results in loss of Hard Delete
recorded data.
For soft delete, we cannot make use of ‘ON DELETE' cascading.
Cascading The alternative is to create an ‘UPDATE' trigger which keeps track of Hard Delete

deleted_flag.

https://medium.com/geekculture/soft-deletes-are-tedious-does-an-ideal-deletion-without-loss-even-exist-9cc5d78e9b 10

https://medium.com/geekculture/soft-deletes-are-tedious-does-an-ideal-deletion-without-loss-even-exist-9cc5d78e9b10

19

A history of price mutations...

20

product_prices

id price
apple 2.00
banana 3.00

carrot 1.00

product_prices

id price
apple 2.00
banana 3.00
carrot 1.00

product_prices

id price created_at
apple 2.00 2023-01
banana 3.00 2023-01

carrot 1.00 2023-01

product_prices product_prices

id price id price created_at
apple 2.00 apple 2.00 2023-01
banana 3.00 banana 3.00 2023-01
carrot 1.00 carrot 1.00 2023-01

product_prices

id price created_at updated_at
apple 2.00 2023-01 2023-01
banana 3.00 2023-01 2023-08

carrot 1.00 2023-01 2023-01

product_prices product_prices product_prices

id price id price created_at id price created _at updated_at
apple 2.00 apple 2.00 2023-01 apple 2.00 2023-01 2023-01
banana 3.00 banana 3.00 2023-01 banana 3.00 2023-01 2023-08
carrot 1.00 carrot 1.00 2023-01 carrot 1.00 2023-01 2023-01

product_prices

id version created_at
apple 1 2023-01
banana : 2023-01
banana 5 2023-08

carrot . 2023-01

24

product_prices

id
apple
banana

carrot

price
2.00
3.00

1.00

product_prices

id
apple
banana
banana

carrot

version

1

product_prices

id
apple
banana

carrot

price
2.00
2.00
3.00

1.00

price created_at

2.00 2023-01
3.00 2023-01
1.00 2023-01
created_at
2023-01
2023-01
2023-08
2023-01

product_prices

id price created _at updated_at
apple 2.00 2023-01 2023-01
banana 3.00 2023-01 2023-08
carrot 1.00 2023-01 2023-01

current_product_prices

id price created_at updated_at
apple 2.00 2023-01 2023-01
banana 3.00 2023-01 2023-08

carrot 1.00 2023-01 2023-01

historical_product_prices

id updated_at price created_at

banana 2023-01 2.00 2023-01

25

Storing mutation history In the database
affords us:

e Stable basis

- Run reports consistently (e.g. calculate net
margin as-of the start of the month)

- Auditable answers to customer queries

- Complex questions can be decomposed across
multiple queries

- Change detection (answer 'what changed'
guestions for integrating with 'derived data’
systems)

Storing mutation history In the database
affords us:

» Stable basis

- Run reports consistently (e.g. calculate net margin as-of the start
of the month)

- Auditable answers to customer queries
- Complex questions can be decomposed across multiple queries

- Change detection (answer 'what changed' questions for
integrating with 'derived data' systems)

* Developer safety
- Retrieving & restoring old versions is Ops-free

— Easier debugging (reproduce the conditions of a bug at the time it
happened)

26

27

Is mutation history enough to capture your

application complexities?

* Unlikely!

Schema changes must (somehow) not affect
historical versions

Cannot import late-arriving, out-of-order data
No affordance to ‘correct’ earlier versions

Will your application ever need time travel?

28

Who invariably needs history & time travel?

29

Anyone who works with customers...

customer_address

id
kent
kent

kent

kent

posted_at

effective from

2018

2021

2022

2023

2018

2020

2020

2024

address

94417

94414

94415

94419

“l forgot to tell you that | moved last year.”
“You got last year’s address change wrong.”

“I'm going to move next year.”

30

Anyone who works with employees...

“Carol’s salary needs to be increased by 10%,
backdated to the last payroll period.”

“Bob worked 2 days last week and his time needs
to be included in next month’s invoice.”

“Alice is going on holiday in 2 weeks’ time,
who is available to cover her?”

31

Anyone who works with calculations & reports...

“What was my customer’s credit rating last
Monday as | knew it last Friday?”

“What is the financial risk exposure of my
portfolio based on current market data
compared with yesterday?”

“What did we think our customer’s credit rating
was at the time Lehman defaulted when we told
the SEC that all of our customers had high credit
ratings?”

32

Anyone who sells things...

product_taxes
product_prices

id version percentage
id version price created_at apple 1 10
apple 1 2.00 2023-01 apple 2 15
banana 1 2.00 2023-01 banana 1 20
banana 2 3.00 2023-08 banana || 2 18
carrot 1 1.00 2023-01 carrot 1 10
product_discount product_shipping
id version percentage created_at id version rate
apple 1 10 2023-01 apple 1 1.00
banana i) 10 2023-01 apple 2 1.50
carrot 1 10 2023-01 banana 1 1.00
carrot 2 20 2023-08 carrot 1 1.00
carrot 2 2.00

created_at
2023-01
2023-08
2023-01
2023-08

2023-01

created_at
2023-01
2023-08
2023-01
2023-01

2023-08

33

...and so on...

34

How can we rigorously model historical
versions of rows In the relational model?

35

Bitemporality

Developing

Time-Oriented

~ AN .
SN < N S
S ~ L L [Database
N
AN Applications

w\‘ ol Sttt

Figure 3: Historical Relation

valid\ valid\ valid\ valul\
time time h‘me' time
transaction
- >
time

Figure 4: Temporal Relation

Released: 15 August 1999

Scheme Evolution and the Relationship Algebra, May 1988
Available freely online: https://www?2.cs.arizona.edu/~rts/tdbbook.pdf

https://apps.dtic.mil/sti/tr/pdf/ADA201297.pdf

https://www2.cs.arizona.edu/~rts/tdbbook.pdf
https://apps.dtic.mil/sti/tr/pdf/ADA201297.pdf

37

278 CHAPTER TEN : BITEMPORAL TABLES

customer_number property_number

m n

customer W property
property._type

Figure 10.1 The property ownership relationship.

i

i\

38

39

40

To maintain a ‘bitemporal’ version of a row:

e Always record two timestamps alongside your data
* One is the timeline of when things actually happened

 The other is the timeline of when information was
Inserted into the system

* “The purpose of the 2 dates is to make sure that our
system is eventually consistent with reality”

41

To maintain a ‘bitemporal’ version of a row:

only insert here

!

»

system time

append-only timeline

insert anywhere

mutable timeline

< >

valid time

42

System Time

e Immutable!

* Auditable history of data as we knew it

* The system lifecycle of a record
* A stable basis for decision making

43

Valid Time

* Mutable!
* Potentially meaningful to the application
* The domain lifecycle of a record

44

Bitemporality

Timestamps imply periods (e.g. from now until the
end of time), modelled as intervals or start + end

System time period = period during which a fact
stored in the database Is regarded as true (a fact
IS true until corrected)

Valid time period = period during which a fact is
true in the real world

Bitemporal data simply combines both system and
valid time dimensions

2, 3 or 4 timestamps? (and no overlaps allowed!)

product_id = registered_from | registered_to = valid_from valid_to price 9999-12-31

2019-04-01

2019-03-02

2019-02-12

reg

2019-02-10

1002 2019-03-02 2019-04-01 | 2019-01-10 = 9999-12-31 = 103 2019:02:09

1002 2019-04-01 9999-12-31 | 2019-01-10 = 2019-04-02 = 103

2019-01-01

wn = o
S - S
= < o~
1= =) o
@ o o
= o =
1=} 1=} b=t
~ & ~

2019-04-02

2019-02-15
2019-02-17
9999-12-31

g

https://bitemporal.net/generate-bitemporal-intervals/

https://bitemporal.net/generate-bitemporal-intervals/

46

Terminology

SQL:2011 vs. Application Time Synonym System Time Synonym
Snodgrass Valid Transaction

Beck Effective Posting

Fowler Actual Record

Date/Darwen Stated Logged

Johnston Effective Assertion

Kafka Event Ingestion

47

Implications

Valid Time

System Time

History of things being modelled

History of changes to the database

Underpinning user-facing features

Auditing and compliance

Modify the past, present and future

Immutable, append-only

Maintained by your app

Maintained by Triggers/ORM/DB

48

Deueloping

Time-Oriented

Database

Available freely online: https://www2.cs.arizona.edu/~rts/tdbbook.pdf

10.2 Modifications

https://www2.cs.arizona.edu/~rts/tdbbook.pdf

278 CHAPTER TEN : BITEMPORAL TABLES

customer_number property_number

m n

customer W property
property._type

Figure 10.1 The property ownership relationship.

i

i\

49

Code Fragment 10.2 property_number is a (valid-time sequenced, transaction-time

Code Fragment 10.1 Create the Prop_Owner table. :
sequenced) primary key for Prop_Owner.

CREATE TABLE Prop_Qwner (

CREATE ASSERTION P_0_seq_primary_ke
customer_number INT, -U_seq_p y_key

CHECK (NOT EXISTS (SELECT =

property_number INT, FROM Prop_Owner AS P1
VT _Begin DATE, WHERE property_number IS NULL
OR 1 < (SELECT COUNT(customer_number)
VI_End DATE, FROM Prop_Owner AS P2
TT_Start TIMESTAMP, WHERE Pl.property_number = P2.property_number
TT_Stop TIMESTAMP) AND P1.VT_Begin < P2.VT_End

AND P2.VT_Begin < P1.VT_End
AND P1.TT_Stop = DATE '9999-12-31'
AND P2.TT_Stop DATE '9999-12-31'))

CREATE TABLE Customer (

name CHAR, Code Fragment 10.3 Prop_Owner.property_number defines a contiguous valid-time
VT_Begin DATE, history.

VT_End DATE, CREATE ASSERTION P_O_Contiguous_History

TT_Start TIMESTAMP, CHECK (NOT EXISTS (SELECT *

TT_Stop TIMESTAMP) FROM Prop_Owner AS P, Prop_Owner AS P2

WHERE P.VT_End < P2.VT_Begin
AND P.property_number = P2.property_number

CREATE TABLE Property (AND P.TT_Stop — DATE '9999-12-31°
property_number INT, AND P2.TT_Stop = DATE '9999-12-31'
address CHAR, AND NOT EXISTS ¢
property_type INT, SELECT *

FROM Prop_Owner AS P3

estimated_value INT, WHERE P3.property_number = P.property_number

VT_Begin DATE, AND (((P3.VT_Begin <= P.VT_End)
VT_End DATE, AND (P.VT_End < P3.VT_End))
TT_Start TIMESTAMP, OR ((P3.VT_Begin < P2.VT_Begin)
TT_Stop TIMESTAMP) AND (P2.VT_Begin <= P3.VT_End)))

AND P3.TT_Stop = DATE '9999-12-31"))

50

51

Eva Nielsen buys the flat at Skovvej 30 in Aalborg on January 10,
1998.

Code Fragment 10.4

INSERT INTO Prop_Owner (customer_number, property_number, VT_Begin,
VT_End, TT_Start, TT_Stop)

VALUES (145, 7797, CURRENT_DATE,
DATE '9999-12-31", CURRENT_TIMESTAMP, DATE '9999-12-31")

Valid time

Eva

>
>

5 10 15 20 25 30
Transaction time

Figure 10.2 A bitemporal time diagram corresponding to Eva purchasing the flat,
performed on January 10.

52

Code Fragment 10.5 Peter Olsen buys the flat on January 15, 1998.

UPDATE Prop_Owner
SET customer_number = 827
WHERE property_number = 7797

A A

304

254
[\5} 20_
-E Peter
B,
g 1 5 7 L 3

Eva
101 —
5_

5 10 15 20 25 30
Transaction time

Figure 10.3 A current update: Peter buys the flat, performed on January 15.

53

Code Fragment 10.7

INSERT INTO Prop_QOwner

SELECT 827, property_number, CURRENT_DATE, VT_End,
CURRENT_TIMESTAMP, DATE '9999-12-31"'

FROM Prop_Owner

WHERE property_number = 7797
AND VT_Begin <= CURRENT_DATE
AND VT_End > CURRENT_DATE
AND TT_Stop = DATE '9999-12-31'

INSERT INTO Prop_Owner
SELECT customer_number, property_number, VT_Begin,
CURRENT_TIMESTAMP, DATE '9999-12-31'
FROM Prop_Owner
WHERE property_number = 7797
AND VT_Begin < CURRENT_DATE
AND VT_End > CURRENT_DATE
AND TT_Stop = DATE '9999-12-31"'

UPDATE Prop_Owner
SET TT_Stop = CURRENT_TIMESTAMP
WHERE property_number = 7797
AND VT_Begin < CURRENT_DATE
AND VT_End > CURRENT_DATE
AND TT_Stop = DATE '9999-12-31"'

INSERT INTO Prop_Owner

SELECT 827, property_number, VT_Begin, VT_End,
CURRENT_TIMESTAMP, DATE '9999-12-31'

FROM Prop_Owner

WHERE property_number = 7797
AND VT_Begin > CURRENT_DATE
AND TT_Stop = DATE '9999-12-31'

UPDATE Prop_Owner
SET TT_Stop = CURRENT_TIMESTAMP
WHERE property_number = 7797
AND VT_Begin > CURRENT_DATE
AND TT_Stop = DATE '9999-12-31'

Peter Olsen buys the flat on January 15, 1998, a current update.

CURRENT_DATE,

Valid time

5 10 15 20 25 30
Transaction time

Figure 10.4 Splitting a polygonal region into rectangles.

Table 10.1 Result of the current insertion.

customer_. property.

number number VT_Begin VT_End TT_Start TT_Stop
145 7797 1998-01-10 9999-12-31 1998-01-10 1998-01-15
145 7797 1998-01-10 1998-01-15 1998-01-15 9999-12-31
827 7797 1998-01-15 9999-12-31 1998-01-15 9999-12-31

54

55

Code Fragment 10.8 Peter Olsen sells the flat on January 20, 1998.

DELETE FROM Prop_QOwner
WHERE property_number = /7797

A A A A
30
254
2201 —
= Peter
o
§ 154 E—
Eva
10 4 >
5-

5 10 15 20 25 30
Transaction time

Figure 10.6 A current deletion: Peter sells the flat, performed on January 20.

56

Code Fragment 10.11

Peter Olsen sells the flat on January 20, 1998, a current deletion,
simplified version.

INSERT INTO Prop_Owner

SELECT customer_number, property_number, VT_Begin, CURRENT_DATE,
CURRENT_TIMESTAMP, DATE '9969-12-31'
FROM Prop_Owner
WHERE property_number = 7797
AND VT_Begin < CURRENT_DATE
AND VT_End > CURRENT_DATE
AND TT_Stop = DATE '9999-12-31"
UPDATE Prop_Owner
SET TT_Stop = CURRENT_TIMESTAMP
WHERE property_number = 7797
AND VT_End > CURRENT_DATE
AND TT_Stop = DATE '9999-12-31"
Table 10.2 Result of the current deletion.
customer_ property_
number number VT_Begin VT_End TT_Start TT_Stop
145 7797 1998-01-10 9999-12-31 1998-01-10 1998-01-15
145 7797 1998-01-10 1998-01-15 1998-01-15 9999-12-31
827 7797 1998-01-15 9999-12-31 1998-01-15 1998-01-20
827 7797 1998-01-15 1998-01-20 1998-01-20 9999-12-31

Code Fragment 10.12

uary 23.
INSERT INTO Prop_Owner (customer_number,
VT_End, TT_Start, TT_Stop)
VALUES (145, 7797, DATE '1998-01-03",
DATE '1998-01-10"', CURRENT_TIMESTAMP,
A A 4 A
301
254
§ 201 —
= Peter
o
3 E S EEEE—
S 15
Eva
104
1 >

5 10 15 20 25 30
Transaction time

property_number,

DATE '9999-12-31")

Figure 10.8 A sequenced insertion performed on January 23: Eva actually purchased

the flat on January 3.

57

Eva actually purchased the flat on January 3, performed on Jan-

VT_Begin,

A A A

301

25
2 20 >
§ Peter
£ 157 A

Eva
10- '
> >
5 10 15 20 25 30

Transaction time

Figure 10.10 An alternate splitting into rectangles.

Table 10.3 Result of the sequenced insertion.

customer. property.
number number VT_Begin VT_End TT Start TT_Stop
145 7797 1998-01-10 9999-12-31 1998-01-10 1998-01-15
145 7797 1998-01-10 1998-01-15 1998-01-15 9999-12-31
827 7797 1998-01-15 9999-12-31 1998-01-15 1998-01-20
827 7797 1998-01-15 1998-01-20 1998-01-20 9999-12-31
145 7797 1998-01-03 1998-01-10 1998-01-23 9999-12-31

58

Code Fragment 10.13

Eva actually purchased the flat on J y 3, with tr

time splitting.

-- Do normal insert if there are no overlapping rows that
-- do not contain the period of applicability
INSERT INTO Prop_Owner
SELECT 145, 7797, DATE '1998-01-03', DATE '1998-01-10',
CURRENT_TIMESTAMP, DATE '9999-12-31'
FROM DUAL
WHERE NOT EXISTS (SELECT *
FROM Prop_Owner
WHERE customer_number = 145
AND property_number = 7797
AND DATE '1998-01-03' < VT_End
AND VT_Begin < DATE '1998-01-10'
AND NOT (VT_Begin < DATE '1998-01-03"
AND DATE '1998-01-10' < VT_End)
AND TT_Stop = DATE '9999-12-31")
-- If there is an overlap, extend it, unless PA is contained in PV
INSERT INTO Prop_Owner
SELECT customer_number, property_number,
CASE WHEN DATE '1998-01-03 < VT_Begin
THEN DATE '1998-01-03'
ELSE VT_Begin END,
CASE WHEN DATE '1998-01-10 < VT_End
THEN VT_End
ELSE DATE '1998-01-10"' END,
CURRENT_TIMESTAMP, DATE '9999-12-31"
FROM Prop_Owner
WHERE customer_number = 145
AND property_number = 7797
AND DATE '1998-01-03' < VT_End
AND VT_Begin < DATE '1998-01-10'
AND NOT (VT_Begin < DATE '1998-01-03"
AND DATE '1998-01-10' < VT_End)
AND TT_Stop = DATE '9999-12-31"

UPDATE Prop_Owner
SET TT_Stop = CURRENT_TIMESTAMP
WHERE customer_number = 145
AND property_number = 7797
AND DATE '1998-01-03"' < VT_End
AND VT_Begin < DATE '1998-01-10'
AND NOT (VT_Begin < DATE '1998-01-03'
AND DATE '1998-01-10' < VT_End)
AND TT_Stop = DATE '9999-12-31"

304

N
ul
I

N
o
1

Valid time
o

101

Peter

Eva

>

Figure 10.10 An alternate splitting into rectangles.

10 15 20 25
Transaction time

\ 4

30

Table 10.4 Result of a second approach to the sequenced insertion.

customer_ property.
number number VT_Begin VT_End TT.Start TT.Stop
145 7797 1998-01-10 9999-12-31 1998-01-10 1998-01-15
145 7797 1998-01-10 1998-01-15 1998-01-15 1998-01-23
827 7797 1998-01-15 9999-12-31 1998-01-15 1998-01-20
827 7797 1998-01-15 1998-01-20 1998-01-20 9999-12-31
145 7797 19980103 1996701=15 1998=01-23 19999-12731

59

Code Fragment 10.14 Eva actually purchased the flat on January 5 (nontemporal
version).

DELETE FROM Prop_Owner
WHERE property_number = 7977

|

Peter

Valid time
o
Y

Eva

—
O
1

Ul
1

Y

5 10 15 20 25 30

Transaction time

Figure 10.12 A sequenced deletion performed on January 26: Eva actually purchased
the flat on January 5.

Code Fragment 10.15 Eva actually purchased the flat on January 5.

INSERT INTO Prop_Owner
SELECT customer_number, property_number, DATE '1998-01-05', VT_End,
CURRENT_TIMESTAMP, DATE '9999-12-31'
FROM Prop_Owner
WHERE property_number = 7797
AND VT_Begin < DATE '1998-01-02'
AND VT_End > DATE '1998-01-05'
AND TT_Stop = DATE '9999-12-31"'

INSERT INTO Prop_Owner
SELECT customer_number, property_number, VT_Begin, DATE '1998-01-02',
CURRENT_TIMESTAMP, DATE '9999-12-31'
FROM Prop_Owner
WHERE property_number = 7797
AND VT_Begin < DATE '1998-01-02'

AND VT_End > DATE '1998-01-02° Table 10.5 Result of the sequenced deletion.
AND TT_Stop = DATE '9999-12-31'

customer._ roperty.
UPDATE Prop_Owner prop Y

SET TT Stop = CURRENT TIMESTAMP number number VT_Begin VT_End TT Start TT_Stop
WHERE property_number = 7797
AND VT_Begin < DATE '1998-01-02° 145 7797 1998-01-10 9999-12-31 1998-01-10 1998-01-15
AND VT_End > DATE "1998-01-02 145 7797 1998-01-10 1998-01-15 1998-01-15 9999-12-31
AND TT_Stop = DATE '9999-12-31"
827 7797 1998-01-15 9999-12-31 1998-01-15 1998-01-20
INSERT INTO Prop_Owner
SELECT customer_number, property_number, DATE '1998-01-05', VT_End, 827 7797 1998-01-15 1998-01-20 1998-01-20 9999-12-31
CURRENT_TIMESTAMP, DATE '9999-12-31" 145 7797 1998-01-03 1998-01-10 1998-01-23 1998-01-26
FROM Prop_Owner
WHERE property number = 7797 145 7797 1998-01-05 1998-01-10 1998-01-26 9999-12-31

AND VT_Begin < DATE '1998-01-05
AND VT_End >= DATE '1998-01-05"
AND TT_Stop = DATE '9999-12-31

UPDATE Prop_Owner

SET TT_Stop = CURRENT_TIMESTAMP

WHERE property_number = 7797
AND VT_Begin < DATE '1998-01-05
AND VT_End >= DATE '1998-01-05'
AND TT_Stop = DATE '9999-12-31

UPDATE Prop_Owner

SET TT_Stop = CURRENT_TIMESTAMP

WHERE property_number = 7797
AND VT_Begin >= DATE '1998-01-02'
AND VT_End <= DATE '1998-01-05"
AND TT_Stop = DATE '9999-12-31

Code Fragment 10.16 Peter actually purchased the flat on January 12 (nontemporal
version).

UPDATE Prop_Owner

SET customer_number = 145

WHERE property_number = 7797
AND customer_number <> 145

Table 10.6 Result of the sequenced update.

customer_ property.

number number VT_Begin VT_End TT_Start TT_Stop
145 7797 1998-01-10 9999-12-31 1998-01-10 1998-01-15
145 7797 1998-01-10 1998-01-15 1998-01-15 1998-01-28
827 7797 1998-01-15 9999-12-31 1998-01-15 1998-01-20
827 7797 1998-01-15 1998-01-20 1998-01-20 1998-01-28
145 7797 1998-01-03 1998-01-10 1998-01-23 1998-01-26
145 7797 1998-01-05 1998-01-10 1998-01-26 1998-01-28
145 7797 1998-01-05 1998-01-12 1998-01-28 9999-12-31

827 7797 1998-01-12 1998-01-20 1998-01-28 9999-12-31

62

Code Fragment 10.17 Peter actually purchased the flat on January 12.

INSERT INTO Prop_Owner

SELECT customer_number, property_number, VT_Begin, DATE '1998-01-12°',

CURRENT_TIMESTAMP, DATE '9999-12-31"'
FROM Prop_Owner
WHERE property_number = 7797 AND customer_number <> 145
AND VT_Begin < DATE '1998-01-12'
AND VT_End > DATE '1998-01-12'
AND TT_Stop = DATE '9999-12-31"'

INSERT INTO Prop_Owner
SELECT customer_number, property_number, DATE '1998-01-15', VT_End,
CURRENT_TIMESTAMP, DATE '9999-12-31'
FROM Prop_QOwner
WHERE property_number = 7797 AND customer_number <> 145
AND VT_Begin < DATE '1998-01-15'
AND VT_End > DATE '1998-01-15'
AND TT_Stop = DATE '9999-12-31"'

INSERT INTO Prop_Owner
SELECT 145, property_number, VT_Begin, VT_End,
CURRENT_TIMESTAMP, DATE '9999-12-31"'

FROM Prop_Owner

WHERE property_number = 7797 AND customer_number <> 145
AND VT_Begin < DATE '1998-01-15'
AND VT_End > DATE '1998-01-12'
AND TT_Stop = DATE '9999-12-31"'

UPDATE Prop_QOwner

SET TT_Stop = CURRENT_TIMESTAMP

WHERE property_number = 7797 AND customer_number <> 145
AND VT_Begin < DATE '1998'01-15"
AND VT_End > DATE '1998-01-12'
AND TT_Stop = DATE '9999-12-31"'

INSERT INTO Prop_Owner

SELECT customer_number, property_number, DATE '1998-01-12', VT_End,

CURRENT_TIMESTAMP, DATE '9999-12-31'
FROM Prop_Owner
WHERE property_number = 7797 AND customer_number <> 145
AND VT_Begin < DATE '1998-01-12'
AND VT_End > DATE '1998-01-12'
AND TT_Stop = DATE '9999-12-31"

UPDATE Prop_Owner

SET TT_Stop = CURRENT_TIMESTAMP

WHERE property_number = 7797 AND customer_number <> 145
AND VT_Begin < DATE '1998-01-12'
AND VT_End > DATE '1998-01-12'
AND TT_Stop = DATE '9999-12-31°'

INSERT INTO Prop_Owner

SELECT customer_number, property_number, VT_Begin, DATE
CURRENT_TIMESTAMP, DATE '9999-12-31'

FROM Prop_Owner

WHERE property_number = 7797 AND customer_number <> 145
AND VT_Begin < DATE '1998-01-15'
AND VT_End > DATE '1998-01-15'
AND TT_Stop = DATE '9999-12-31"'

UPDATE Prop_Owner

SET TT_Stop = CURRENT_TIMESTAMP

WHERE property_number = 7797 AND customer_number <> 145
AND VT_Begin < DATE '1998-01-15'
AND VT_End > DATE '1998-01-15'
AND TT_Stop = DATE '9999-12-31"'

'1998-01-15",

63

Code Fragment 10.18

UPDATE Prop_Owner

SET TT_Stop = CURRENT_TIMESTAMP

WHERE (VT_End
AND TT_Stop

Table 10.7 After a nonsequenced deletion.

customer_ property_
number number VT_Begin VT_End TT_Start TT Stop
145 7797 1998-01-10 9999-12-31 1998-01-10 1998-01-15
145 7797 1998-01-10 1998-01-15 1998-01-15 1998-01-28
827 7797 1998-01-15 9999-12-31 1998-01-15 1998-01-20
827 7797 1998-01-15 1998-01-20 1998-01-20 1998-01-28
145 7797 1998-01-03 1998-01-10 1998-01-23 1998-01-26
145 7797 1998-01-05 1998-01-10 1998-01-26 1998-01-28
145 7797 1998-01-05 1998-01-12 1998-01-28 1998-01-30
827 7797 1998-01-12 1998-01-20 1998-01-28 9999-12-31

Delete all records with a valid-time duration of exactly one week.

- VT_Begin DAY) = INTERVAL '7' DAY
DATE '9999-12-31"

Peter

Valid time

Eva

T T T >

5 10 15 20 25 30
Transaction time

Figure 10.14 A nonsequenced deletion performed on January 30: Delete all records
of exactly one-week duration.

64

Deueloping

Time-Oriented

Database

Available freely online: https://www2.cs.arizona.edu/~rts/tdbbook.pdf

10.3 Queries

https://www2.cs.arizona.edu/~rts/tdbbook.pdf

Code Fragment 10.19 Give the history of owners of the flat at Skovvej 30 in Aalborg as
of January 1, 1998.

SELECT customer_number, VT_Begin, VT_End
FROM Prop_Owner
WHERE property_number = 7797
AND TT_Start <= DATE "1398-01-01 customer_number VT_Begin VT_End
AND DATE '1998-01-01"' < TT_Stop

The time-slice as of January 18 tells a different story:

145 1998-01-10 1998-01-15
827 1998-01-15 9989-12-31
A
304
Taking a transaction time-slice as of January 14 results in a history with one 5 |
entry:
gZO-
customer_number VT_Begin VT_End % Peter
3 151
145 1998-01-10 9999-12-31 Eva
10+
5_
5 10 15 |20 25 30

tt=18
Transaction time

Figure 10.15 A transaction time-slice as of January 18.

65

66

w
()
1

N
Ul
I

Valid time
N
()

Peter

e
(O]
I

Eva

s
I
®

=
(@)
1

ul
1

T T T T >

5 10 15 20 25 30
Transaction time

Figure 10.16 A valid time-slice on January 13.

Table 10.8 The valid time-slice on January 13.

customer_number TT Start TT Stop
145 1998-01-10 1998-01-15
145 1998-01-15 1998-01-28
827 1998-01-28 9999-12-31

A \
304
251
[\9)
g
RS, 201 1 3 —_—
3 Peter: 4 i
151 Eva ! ' 8
vt=13]
' 2 . >

N
ul (@]
1 1
v
sy
o
~

5 10 15 20 25 30
Transaction time

Figure 10.17 The underlying rectangles encoding the bitemporal regions.

L
>

w
O
I

N
ol
1

Peter

Valid time
N
{ 0]
Y

Eva

S
I
—
w

\/

5+ _I—
5 10 15 |20 25 30
t=18
Transaction time

Y

Figure 10.18 A bitemporal time-slice on a valid time of January 13 and as of a
transaction time of January 18.

68

Summary: storing bitemporal data 101

2, 3 or 4 timestamps
“No overlaps allowed” primary key constraint

Performance, complexity and functionality
considerations

4 timestamps is best (e.g. SQL:2011), complexity of
updates/maintenance is harder, but read
performance is good

2 timestamps requires lots of ' MAX" and
"< ...whereas non-overlapping rectangles are easy
to query

69

Technical challenges with the ad hoc approach:

* Do I need to store deltas?

 How to handle duplicate Primary Key values?
 How can | control the query performance?

* What does this mean for triggers?

 Code & query complexity!

70

Key tradeoff dimensions:

Write latency & read latency
Cost of storage and indexing

What granularity of history is required, e.qg.
— Need profitability only as of end of month, only need to what it was daily
- Do you need a complete audit trail of changes

Duration of history (retention periods and policies)
Easy of query development
Ability to support new queries quickly or effectively

Over-engineering or under-engineering can be expensive (cost
and business opportunities)

71

SQL:2011

A culmination of decades-long academic & industry reflection
Extends the ISO standard with temporal operators
Demanded by industry

Partially implemented by a few DBMS vendors

Still demanded by industry

72

Temporal features in SQL:2011

Krishna Kulkarni, Jan-Eike Michels (IBM Corporation)
{krishnak, janeike}@us.ibm.com

ABSTRACT

SQL:2011 was published in December of 2011,
replacing SQL:2008 as the most recent revision of the
SQL standard. This paper covers the most important
new functionality that is part of SQL:2011: the ability to
create and manipulate temporal tables.

1. Introduction

SQL is the predominant database query language stan-
dard published jointly by ISO (the International Organi-
zation for Standardization) and IEC (the International
Electrotechnical Commission). In December 2011, SO/
IEC published the latest edition of the SQL standard,
SQL:2011. A recent article in SIGMOD Record pro-
vides a brief survey of the new features in SQL:2011
[1]. Because of space constraints, it did not cover the
most important new feature in SQL:2011: the ability to
create and manipulate temporal tables, i.e., tables whose
rows are assoclated with one or more temporal periods.
This is the subject of the current article.

2. Temporal data support

implement temporal support as part of the application
logic, which often resulted in expensive development
cycles and complex, hard-to-maintain code.

In 1995, the ISO SQL committee initiated a project to
create a new part of SQL standard devoted to the lan-
guage extensions for the temporal data support. A set of
language extensions based on (but not identical to)
TSQL2 [8] were submitted for standardization at that
time. Unfortunately, these proposals generated consider-
able controversy (see [9] for more details), and failed to
get adequate support from the ISO SQL committee’s
membership. In addition, there was no indication that
key DBMS vendors were planning to implement these
extensions in their products. Eventually, the work on
this new part was cancelled in 2001.

Recently, a new set of language extensions for tempo-
ral data support were submitted to and accepted by the
ISO SQL committee. These language extensions are
now part of SQL:2011 Part 2, SQL/Foundation [10],
instead of appearing as a new part. There is currently at
least one commercial implementation [5] based on these
extensions that the authors are aware of.

2.1 Periods

The rarnerctnane nf taminnral Aata ciinnnrt 159 SO 2011

https://dbs.uni-leipzig.de/file/Temporal%20features%20in%20SQL2011.pdf

https://dbs.uni-leipzig.de/file/Temporal%20features%20in%20SQL2011.pdf

73

Bitemporal Tables

CREATE TABLE Emp (

)

ENo INTEGER,
EStart DATE,
EEnd DATE,
EDept INTEGER,
PERIOD FOR EPeriod (EStart, EEnd),
Sys_ start TIMESTAMP (12) GENERATED
ALWAYS AS ROW START,
Sys_end TIMESTAMP (12) GENERATED
ALWAYS AS ROW END,
EName VARCHAR(30),
PERIOD FOR SYSTEM TIME
(Sys_start, Sys end),
PRIMARY KEY (ENo,
EPeriod WITHOUT OVERLAPS),
FOREIGN KEY
(Edept, PERIOD EPeriod)
REFERENCES Dept
(DNo, PERIOD DPeriod)
WITH SYSTEM VERSIONING

Automatic, Auditable, Mutable History of Data

Eno EStart EEnd EDept

22217 2010-01-01 2011-11-12 | 3

UPDATE Emp
FOR PORTION OF EPeriod
FROM DATE '2011-02-03"
TO DATE '2011-09-10"
SET EDept = 4
WHERE ENo = 22217

ENo EStart EEnd EDept

22217 2010-01-01 2011-02-03 | 3

22217 2011-02-03 2011-09-10 | 4

22217 2011-09-10 2011-11-12 | 3

75

Expressive Querying

What was the department where the employee 22217
worked as of December 1, 2010, recorded in the
database as of July 1, 20117?

SELECT ENo, EDept

FROM Emp FOR SYSTEM TIME AS OF
TIMESTAMP '2011-07-01 00:00:00"

WHERE ENo = 22217 AND

EPeriod CONTAINS DATE '2010-12-01"

76

Period Predicates

Express conditions involving periods...

SUCCEEDS v

v

PRECEDES

IMMEDIATELY |
SUCCEEDS 4

IMMEDIATELY
PRECEDES

CONTAINS

OVERLAPS

...

<

ceeed SN ... SR N ER..........]

77

Give the owner of the flat at Skovvej 30 in Aalborg on January 13
as stored in the Prop Owner table on January 18.

1 SELECT customer number

] FROM Prop Owner

WHERE property number = 7797 AND
%2& VT Begin <= DATE 1998-01-13 AND
s Peter DATE 1998-01-13 < VT End AND

Fva TT Start <= DATE 1998-01-18 AND

vt=13 |
104 DATE 1998-01-18 < TT Stop
"

C E:§)25 7 SELECT customer number
TR FROM Prop Owner FOR SYSTEM TIME AS OF
:l?::ﬁclﬂ,.'.’i..ﬁebéﬁ';'.?ﬂf; lt:;r.ne—slice on a valid time of January 13 and as of a DATE ' 1999 - @1 - 18 !
WHERE property number = 7797 AND

VT period CONTAINS DATE '1999-01-13';

S T A C =i About STAC Research Research Domains

SECURITIES TECHNOLOGY ANALYSIS CENTER

Home » Working groups

STAC Bi-Temporal Data SIG

Bi-temporal data (or BTD) are data for which changes are recorded over two independent dimensions of time. These
dimensions are referred to as "valid time" and "transaction time," where valid time denotes the period during which a
fact is true with respect to the real world and transaction time denotes the period during which a fact is stored in a
database. Trading firms use BTD in applications ranging from risk management and back-testing of trading strategies to

P&L Explain and regulatory reporting.

For more background on BTD, see the slides and video from presentations given by Bank of America Merrill Lynch and

Bitemporaldata.com at the June STAC Analytics Technology Conference on current issues in bi-temporal data.
Background on the STAC BTD SIG

The STAC Bi-Temporal Data Special Interest Group (BTD SIG) is a group of end-user organizations and vendors that will

meet periodically to discuss key issues related to BTD.

» »I) 0461833

See this FAQ for eligibility requirements and other details.
Bitemp 2.0 - The hype, the barriers and the actions to take

The initial kickoff telecon was held on October 7, 2011. Slides and replay of the call are here.
1,430 views * 9 Jul 2011 53 GP DISLIKE > SHARE ¥ DOWNLOAD & CLIP =+ SAVE

The first in-person meetings were held in New York (Nov 2, 2011) and London (Nov 9, 20011). These were end-user only

meetings.

https://www.youtube.com/watch?v=R7kQ05Z2JKk https://lwww.stacresearch.com/btd

https://www.youtube.com/watch?v=R7kQO5Z2JKk
https://www.stacresearch.com/btd

79

SQL:2011 has yet to become commonplace - why?

* For database vendors:

- Complex to retrofit

— Architecture mismatch
* For developers:

- Lack of awareness & foresight
- Complex performance

https://illuminatedcomputing.com/posts/2017/12/temporal-databases-bibliography/

Code like song

|lluminated Computing

Paul A. Jungwirth

Blog B
Email

Temporal Databases Annotated Bibliography

2017-12-05

Portfolio

I’ve been reading about temporal databases for a few years now, so I think it’s time I share my

Resume
Github
Stack Overflow

bibliography and notes. This is presented in “narrative order”, so that you can get a sense of how

the research has developed. This article somewhat overlaps a mini literature review I wrote on the
Postgres hackers mailing list, but this article is more complete and in a place where I can keep it
updated.

Temporal databases let you track the history of things over time: both the history of changes to the

Skill Spy

database (e.g. for auditing) and the history of the thing itself. They are not the same thing as time- Alien Words

series databases: whereas a time-series database has time-stamped events, a temporal database Eleatblext
. ; ; ; ; : db_leftovers gem
stores the history of things, typically by adding a start/end time to each row (so two timestamps, not spel N
ec otes

one). With time-series the challenge is typically scale; with temporal the challenge is with O

complexity and correctness.

Research

Snodgrass, Richard T. Developing Time-Oriented Database Applications in SQL. 1999. The
seminal work on temporal databases and still the most useful introduction I know. Covers the

Writing

APIc renpearad fie

Survey of SQL:2011
Temporal Features

. Drawing Redux Form
FieldArrays with Pug

| Validating FieldArrays in
Redux Form

“combinatorial explosion” of non-temporal/state-temporal/system-temporal/bi-temporal tables,

current/sequenced/non-sequenced queries, SELECT / INSERT / UPDATE / DELETE , different RDBMS

https://illuminatedcomputing.com/posts/2017/12/temporal-databases-bibliography/

extra pseudo-column metadata. I hope implementers will take their advice seriously and not build

temporal features on such a distorting idea.

Something I disagreed with was their suggestion to use tables in sixth-normal form—basically
every column gets its own table—since attributes can have different lifespans. I can see how that is
purer, but it seems like just too much complexity. They probably suspected the same because they
always show how to do things with either that approach or tables in a more traditional third-normal
form (or BCNF if you prefer). Even that is slightly distorted in order to avoid NULL s, but you can
easily look past that.

ISUEIIVA appreciated that on page 282 they mention DDL on temporal databases. Like everyone
they say it’s beyond the scope of their current discussion, but it’s a penetrating insight to say, “the
database catalog might itself need to be treated as a temporal database.”

SQL:2011 Draft standard. (pdf) Personally I find the standard pretty disappointing. It uses separate
start/end columns instead of built-in range types, although range types offer benefits like exclusion
constraints and convenient operators for things like “overlaps” that are verbose to code correctly by
hand. It only mentions inner joins, not the various outer joins, semi-joins (EXISTS), anti-joins (NOT
EXISTS), or aggregates. Many of its features apply only to system-time, not application-time, even
though applicaion-time is the more interesting and less-available feature. (There are lots of auditing
add-ons, but almost nothing for tracking the history of things.) The syntax seems too specific,
lacking appropriate generality. A lot of these drawbacks seem motivated by a goal that goes back to

lluminated Computing

1

Survey of SQL:2011 Temporal Features

2019-09-04

Introduction

This blog post is a survey of SQL:2011 Temporal features from MariaDB, IBM DB2, Oracle, and
MS SQL Server. I’'m working on adding temporal features to Postgres, so I wanted to see how other
systems interpret the standard.

If you’re new to temporal databases, you also might enjoy this talk I gave at PGCon 2019.

In this post I cover both application-time (aka valid-time) and system-time, but I focus more on
valid-time. Valid-time tracks the history of the thing “out there”, e.g. when a house was remodeled,
when an employee got a raise, etc. System-time tracks the history of when you changed the
database. In general system-time is more widely available, both as native SQL:2011 features and as
extensions/plugins/etc., but is less interesting. It is great for compliance/auditing, but you’re
unlikely to build application-level features on it. Also since it’s generated automatically you don’t
need special DML commands for it, and it is less important to protect yourself with temporal
primary and foreign keys.

At this point all the major systems I survey have some temporal support, although none of them
support it completely. On top of that the standard itself is quite modest, although in some ways it

https://illuminatedcomputing.com/posts/2019/08/sql2011-survey/

Code like song

Paul A. Jungwirth
Blog N
Email

Portfolio
Resume
Github
Stack Overflow

Skill Spy
Alien Words
ElectNext
db_leftovers gem
Tech Notes
... more

Writing
Survey of SQL:2011
. Temporal Features
. Drawing Redux Form

kA FieldArrays with Pug
wett) Validating FieldArrays in
Redux Form

T
B et uob 1y
BE oub Hurgs.

Testing Your

Y BECEPRRE W K D

https://illuminatedcomputing.com/posts/2019/08/sql2011-survey/

MS SQL Server

I tested an evaluation copy of MS SQL Server 2017 (version 14.0.1000.169, RTM).

SQL Server doesn’t support application-time periods at all, just system-time.

MariaDB

MySQL doesn’t support any temporal features, but recent versions of MariaDB have started to add
support. Version 10.3.4 (released Jan 2018) included system-time support; Version 10.4.3 (Feb
2019), valid-time.

Oracle

For my tests I used Oracle 19c (version 19.3) for Linux and ran it on CentOS 7.

System time
Oracle has its own way of tracking table history, so it doesn’t bother with SQL:2011 system-time.

Application time

Oracle lets you declare a PERIOD, but like MariaDb you can’t define a temporal primary key:

IBM DB2

DB2 has the fullest temporal support of all the databases I examined. My tests used version
11.5.0.0 on Linux.

84

MariaDB Temporal Tables

Federico Razzoli

https://mariadb.org/wp-content/uploads/2020/09/Temporal-Tables_serverfest2020.pdf
https://lwww.youtube.com/watch?v=uBoUITsU1Tk

https://mariadb.org/wp-content/uploads/2020/09/Temporal-Tables_serverfest2020.pdf
https://www.youtube.com/watch?v=uBoUlTsU1Tk

'-MarkLogiC'

BETTER WITH
BITEMPORAL

MARKLOGIG WHITE PAPER * JUNE 2015

Hu truly maintain a co

derstanding exactly “what you knew

85

ASSESSMENT: DO YOU NEED BITEMPORAL?

Before you go any further, it is probably helpful to first ask whether you might need bitemporal data management
in your organization. If you answer “yes” to any of the following questions, then bitemporal is a solution that you

should consider.

YES NO
1. Is tracking when events or transactions occur critical to your business? 4
2. Are there ever cases when historical data needs to be updated? v
8. Do you run into circumstances in which there is a lag between when something happened 7
in the real world, and when it was recorded in the database?
4. Do you get frequent requests from regulators to review historical data? v
5. Do you work in an industry in which the sequence of when you learn about certain 7
information is significant, such as in law and intelligence?
6. Is the cost and complexity of storing and accessing historical data in your organization 7
overwhelming?
7. Does managing and accessing historical data cost significant developer resources, or b

carry increasing risk over time?

https://www.marklogic.com/wp-content/uploads/
2015/07/MarkLogic-White-Paper-Better-With-Bi

temporal.pdf

https://www.marklogic.com/wp-content/uploads/2015/07/MarkLogic-White-Paper-Better-With-Bitemporal.pdf
https://www.marklogic.com/wp-content/uploads/2015/07/MarkLogic-White-Paper-Better-With-Bitemporal.pdf
https://www.marklogic.com/wp-content/uploads/2015/07/MarkLogic-White-Paper-Better-With-Bitemporal.pdf

86

A Case Study of Temporal Data

Data Warehousing Table of Contents

Executive Overview 2 Executive Overview

Bienporaiilanics cufpogted 2 Information is the key asset of many companies — and
Tollowing the Broperty. 2 for most, this asset contains time-referenced data. It can
R S ’ be frustrating that standard SQL has so few language
Time-Slice Queries 10

facilities for such data. Fortunately, Teradata® Database
The Spectrum of Bitemporal Queries 13

A Case Study of Temporal Data 0

Acknowledgement 20

13.10 has many new features in its SQL designed

specifically for temporal support.

References 21
This case study will examine how the new SQL language

About the Author 21
features in Teradata Database naturally reflect the
expression in English of modifications and how these
features greatly reduce the length and complexity of such
modifications in conventional SQL. The result is that
developers can now much more easily convert their
applications to support time-varying data and create

By Richard T. Snodgrass, new applications that exploit stored data about the past

Professor of Computer Science,
University of Arizona for deeper insight into the future.

"JERADATA
Raising Intelligence TERADATA

EB-6237 > 1010 > PAGE2OF21 Raising Intelligence

http://rts.cs.arizona.edu/pubs/Teradatacasestudy.pdf

http://rts.cs.arizona.edu/pubs/Teradatacasestudy.pdf

87

Postgres...”?

* Library of bitemporal functions using GIST indexes:
- https://github.com/hettie-d/pg_bitemporal/

* system_time only extensions:
- https://github.com/nearform/temporal_tables
- https://github.com/arkhipov/temporal_tables

https://github.com/hettie-d/pg_bitemporal/
https://github.com/nearform/temporal_tables
https://github.com/arkhipov/temporal_tables

“How can | generate diagrams like this quickly?”

product_id = registered_from | registered_to = valid_from valid_to price 9999-12-31

2019-04-01

2019-03-02

2019-02-12

reg

2019-02-10

1002 2019-03-02 2019-04-01 | 2019-01-10 = 9999-12-31 = 103 2019:02:09

1002 2019-04-01 9999-12-31 | 2019-01-10 = 2019-04-02 = 103

2019-01-01

wn = o
S - S
= < o~
1= =) o
@ o o
= o =
1=} 1=} b=t
~ & ~

2019-04-02

2019-02-15
2019-02-17
9999-12-31

g

https://bitemporal.net/generate-bitemporal-intervals/

https://bitemporal.net/generate-bitemporal-intervals/

89

Bitemporal Visualizer ©

Show Textarea | Full timestamps | Hide About

Price (and tax) scheduling data example oo Application Time
Source: https://bitemporal.net/generate-bitemporal-intervals/
2019-04-02
id | price [sys_start sys_end app_start | app_end
1002 | 100 | 2019-01-01 | 2019-02-09 | 2019-01-05 | 9999-12-31 2019-02-17
1002 | 100 | 2019-02-09 | 9999-12-31 | 2019-01-05 | 2019-01-10
2019-02-15
1002 | 100 | 2019-02-09 | 2019-03-02 | 2019-01-10 | 2019-02-08
1002 105 | 2019-02-09 | 2019-02-10 | 2019-02-08 | 9999-12-31 S 2019-02-08
1002 | 105 | 2019-02-10 | 2019-03-02 | 2019-02-08 | 2019-02-15
2019-01-10
1002 [105 | 2019-02-10 | 2019-02-12 | 2019-02-15 | 2019-02-17
1002 | 103 | 2019-02-10 | 2019-02-12 | 2019-02-17 | 9999-12-31 2019-01-05
1002 | 102 | 2019-02-12 | 2019-03-02 | 2019-02-15 | 9999-12-31 2 2 2 2 2 2 ®
22,0, %299, 9,19, %0, S,
1002 | 103 | 2019-03-02 | 2019-04-01 | 2019-01-10 | 9999-12-31 07 09 Iy o) 0> 07 /)]}/)]e
1002 [103 | 2019-04-01 | 9999-12-31 | 2019-01-10 | 2019-04-02
1002 | 111 | 2019-04-01 | 9999-12-31 | 2019-04-02 | 9999-12-31
11 Rows

Created for XTDB using Scittle
Note that the tool doesn't detect or prevent overlapping (or otherwise invalid) regions

This tool was originally created by the XTDB team but is open to ideas and feature requests (and contributions!) that might be useful with other databases also. Please feel free to open issues.

https://bitemporal-visualizer.github.io/

https://bitemporal-visualizer.github.io/

jdt@juxt.pro jms@juxt.pro
@refset @jarohen

Thank you A
Any questions?

We hope you have enjoyed this presentation!
To learn more, see https:/xtdb.com/v2 to discover JUXT’s open source bitemporal database.
XTDB makes the SQL:2011 bitemporal table experience easy. JUXT

https://xtdb.com/v2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90

