
JUXT AI Radar
An engineer’s guide to the AI landscape
from JUXT’s CTO & AI chapter members Q4 2025

1

An introduction to the AI Radar from
JUXT CTO, Henry Garner
Keeping pace with AI development feels increasingly difficult. New tools appear weekly, claims about
capabilities shift monthly, and what seemed essential last quarter might be yesterday’s news.

Over the past year, our teams have been applying AI across client projects, from coding assistants to
agent frameworks, from prompt engineering to model selection. We’ve seen what works in practice,
what doesn’t live up to the marketing, and where the real value lies for organisations trying to make
sensible technology choices.

We’ve distilled these insights into our first AI Radar: an opinionated guide to the tools, techniques, and
platforms we think are worth your attention right now. It’s structured around four rings (adopt, trial,
assess, and hold) making it easier to understand what’s ready for production use versus what needs
more time to mature.

This isn’t a snapshot: we’ll be updating it regularly as the landscape evolves and our understanding
deepens. If you’re navigating AI adoption in your organisation, we hope it provides a useful reference
point.

Henry Garner (CTO, JUXT), October 2025

Radar overview
Our radar is organized into four main categories, each containing technologies evaluated across four
adoption levels:

Adopt: Technologies we recommend using now

Trial: Worth exploring for new projects

Assess: Keep under observation

Hold: Not recommended for new projects

Categories
Techniques
AI methodologies, approaches, and practices that shape how we build intelligent systems.

Languages & frameworks
Programming languages, libraries, and frameworks that power AI development.

Tools
Software tools and utilities that enhance AI development workflows.

Platforms
Infrastructure and platform services that support AI applications.

2

Contributors
This radar represents our current viewpoint and will be updated regularly. We welcome feedback
and suggestions from the community, you can reach us on LinkedIn, BlueSky and via email. Each
technology entry includes detailed reasoning for its placement, helping you make informed decisions
for your AI projects.

Henry is JUXT’s CTO and leader of the AI Chapter. He’s implemented AI
systems in domains as diverse as education, financial services, and local
government in roles spanning data scientist, software engineer and CTO.
He’s author of the book Clojure for Data Science and maintainer of the open
source statistics library kixi.stats.

Henry Garner

Ben is an account manager at JUXT with extensive experience engineering
and architecting complex systems. His career spans domains from risk
systems in Tier 1 banks to retail recommendation engines and wine trading
platforms. His interest in AI is especially in how it can enhance developer
experience and productivity.

Ben Halton

Denis is a software engineer at JUXT whose technical experience spans
developing Linux kernel modules for Satellite communications to distributed
graph databases to web backends. He is currently focused on providing a
platform that integrates, controls and secures LLM interaction.

Denis Lobanov

Oliver is a software engineer at JUXT who specialises in building data
processing systems and backend infrastructure. He’s recently worked on
integrating cutting-edge database technology for a client and approaches
AI technologies with healthy skepticism: hopeful about what’s possible but
focused on what actually works in practice.

Oliver Marshall

Neale is a principal engineer at JUXT. He’s spent his career in software
development across many domains. He sees himself as an engineer more
than a scientist, advising teams how to use pragmatic workflows to improve
developer productivity and joy.

Neale Swinnerton

Chris is a software engineer at JUXT with broad experience across
industries and technologies. He has long seen automated testing as a
superpower for building reliable systems, and now views large language
models as the next tool for boosting productivity while supporting real
learning.

Chris Williams

https://www.linkedin.com/company/juxt-juxt-pro-/posts/?feedView=all
https://bsky.app/profile/juxt.pro
mailto:info%40juxt.pro?subject=

3

Radar at a glance

Techinques

ADOPT
18. Classical ML
19. RAG
20. LLM-as-a-judge
21. BERT variants
22. Few-shot prompting

TRIAL
23. Cross-encoderreranking
24. Chain of thought (CoT)
25. Model distillation & synthetic data
26. UMAP

ASSESS
27. Structured RAG
28. Hypothetical document embeddings
(HyDE)
29. Fine-tuning with LoRA
30. Agentic tool use

HOLD
31. Word2Vec & GloVe
32. t-SNE
33. Zero-shot prompting
34. AI pull request review

ADOPT
1. PyTorch
2. dbt
3. MCP

TRIAL
4. AutoGen
5. A2A
6. DeepEval
7. LlamaIndex

ASSESS
8. Prolog
9. JAX
10. LangChain & LangGraph
11. PydanticAI
12. Smolagents
13. CrewAI

HOLD
14. TensorFlow
15. Keras
16. R
17. OpenCL

Languages & frameworks

4

Radar at a glance

Tools

ADOPT
35. Software engineering copilots
36. Provider-agnostic LLM facades
37. Notebooks

TRIAL
38. MLflow
39. Vector databases
40. Local model execution environments

ASSESS
41. AI application bootstrappers
42. Agentic computer use
43. Lakera

HOLD
44. Conversational data analysis

ADOPT
45. Weights & Biases
46. Foundation models
47. Data pipeline orchestration tools
48. Cloud model hosting platforms

TRIAL
49. Production AI monitoring platforms
50. Open weight LLMs
51. AI-powered workflow automation
platforms

ASSESS
52. Galileo
53. Kubeflow

HOLD
54. Building against vendor-specific
APIs

Platforms

5

The Radar

ADOPT

TRIAL

ASSESS

HOLD

▲ moved up ▼ moved down � new � no change

Platforms
ADOPT

45. Weights & Biases
46. Foundation models
47. Data pipeline

orchestration tools
48. Cloud model hosting

platforms

TRIAL

49. Production AI
monitoring platforms

50. Open weight LLMs
51. AI-powered workflow

automation platforms

ASSESS

52. Galileo
53. Kubeflow

HOLD

54. Building against
vendor-specific APIs

Tools
ADOPT

35. Software engineering
copilots

36. Provider-agnostic LLM
facades

37. Notebooks

TRIAL

38. MLflow
39. Vector databases
40. Local model execution

environments

ASSESS

41. AI application
bootstrappers

42. Agentic computer use
43. Lakera

HOLD

44. Conversational data
analysis

Languages & Frameworks
ADOPT

1. PyTorch
2. dbt
3. MCP

TRIAL

4. AutoGen
5. A2A
6. DeepEval
7. LlamaIndex

ASSESS

8. Prolog
9. JAX
10. LangChain &

LangGraph
11. PydanticAI
12. Smolagents
13. CrewAI

HOLD

14. TensorFlow
15. Keras
16. R
17. OpenCL

Techniques
ADOPT

18. Classical ML
19. RAG
20. LLM-as-a-judge
21. BERT variants
22. Few-shot prompting

TRIAL

23. Cross-encoder
reranking

24. Chain of thought
(CoT)

25. Model distillation &
synthetic data

26. UMAP

ASSESS

27. Structured RAG
28. Hypothetical

document embeddings
(HyDE)

29. Fine-tuning with LoRA
30. Agentic tool use

HOLD

31. Word2Vec & GloVe
32. t-SNE
33. Zero-shot prompting
34. AI pull request review

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

16 17

45
46

47

48

49

50

51

52

53

54

18

19

20

21

22

23

24
25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

6

Languages & frameworks

ADOPT TRIAL ASSESS HOLD

1

2
3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

Adopt
1. PyTorch
2. dbt
3. MCP

Trial
4. AutoGen
5. A2A
6. DeepEval
7. LlamaIndex

Assess
8. Prolog
9. JAX
10. LangChain & LangGraph
11. PydanticAI
12. Smolagents
13. CrewAI

Hold
14. TensorFlow
15. Keras
16. R
17. OpenCL

ADOPT
1. PyTorch
2. dbt
3. MCP

TRIAL
4. AutoGen
5. A2A
6. DeepEval
7. LlamaIndex

ASSESS
8. Prolog
9. JAX
10. LangChain & LangGraph
11. PydanticAI
12. Smolagents
13. CrewAI

HOLD
14. TensorFlow
15. Keras
16. R
17. OpenCL

Programming languages and frameworks form the backbone of AI development, providing the
tools and abstractions needed to build intelligent systems. From established libraries to emerging
frameworks, these technologies enable developers to create sophisticated AI applications efficiently.

7

Languages & frameworks

PyTorch has demonstrated consistent maturity and widespread adoption across both research and
production environments, earning its place in our Adopt ring. We’re seeing it emerge as the default
choice for many machine learning teams, particularly those working on deep learning projects, thanks
to its intuitive Python-first approach and dynamic computational graphs that make debugging and
prototyping significantly easier.

The framework’s robust ecosystem, exceptional documentation and strong community support
make it a reliable choice for teams at any scale. While TensorFlow remains relevant, particularly
in production deployments, PyTorch’s seamless integration with popular machine learning tools,
extensive pre-trained model repository and growing deployment options through TorchServe have
addressed previous concerns about production readiness. The framework’s adoption by major
technology organisations and research institutions, coupled with its regular release cycle and stability,
gives us confidence in recommending it as a default choice for new machine learning projects.

PyTorch

We’ve placed dbt (data build tool) in the Adopt ring because it has proven to be an essential
framework for organising and managing the data transformations that feed AI systems. dbt brings
software engineering best practices like version control, testing, and documentation to data
transformation workflows, which is crucial when preparing data for AI model training and inference.

The reliability and maintainability of AI systems heavily depend on the quality of their input data,
and dbt helps teams achieve this by making data transformations more transparent and trustworthy.
We’ve seen teams successfully use dbt to create clean, well-documented data pipelines that connect
data warehouses to AI applications, while maintaining the agility to quickly adapt to changing
requirements. Its integration with modern data platforms and strong community support make it a
solid choice for organisations building out their AI infrastructure.

dbt

Anthropic’s Model Context Protocol (MCP) has rapidly gained adoption since its introduction,
addressing the critical need for standardised integration between language models and external tools.
We’ve placed MCP in the Adopt ring based on its practical utility and straightforward implementation
process.

MCP solves the persistent problem of connecting AI models to organisational data and tools without
requiring custom integration work for each connection. The protocol’s popularity stems from how
straightforward MCP servers are to create and deploy, our team has successfully built functional MCP
servers within a matter of hours. This ease of implementation, combined with the growing ecosystem
of community-created servers, significantly reduces development overhead.

For organisations evaluating MCP, the value proposition is clear: rather than building bespoke
integrations between AI assistants and internal systems, teams can leverage existing MCP servers or
create new ones following established patterns. The protocol handles context management and tool
discovery effectively, enabling models to reason appropriately about available capabilities.

MCP

Adopt
These languages and frameworks represent mature, well-supported technologies that are ready for
production use. They offer excellent performance, extensive ecosystems, and proven track records in
real-world applications.

8

Languages & frameworks

We recommend starting with existing MCP servers that match your requirements before building
custom implementations. The protocol’s design encourages reusability, meaning investments in MCP
server development can benefit multiple AI applications across your organisation.

Trial
These languages and frameworks show promising potential with growing adoption and active
development. While they may not yet have the same maturity as Adopt technologies, they offer
innovative approaches and capabilities that make them worth exploring for forward-thinking teams.

We’ve placed AutoGen in the Trial ring based on its promising approach to orchestrating multiple AI
agents for complex problem-solving. This Microsoft-developed framework enables developers to
create systems where AI agents can collaborate, dividing tasks between specialised roles like coding,
testing, and reviewing, similar to how human development teams operate. While still evolving, we’ve
seen compelling early results from teams using AutoGen to build more sophisticated AI applications,
particularly in scenarios requiring multi-step reasoning or specialised domain knowledge.

The framework’s ability to handle interaction patterns between agents with built-in error handling
and recovery shows particular promise for enterprise applications. However, we recommend carefully
evaluating its fit for your specific use case, as the overhead of managing multiple agents may not
be justified for simpler applications where a single large language model would suffice. We’re also
watching how the framework’s approach to agent coordination evolves as the field matures.

AutoGen

Google’s Agent2Agent (A2A) protocol addresses the emerging need for standardised communication
between AI agents in multi-agent systems. Launched in April 2025 and now governed by the Linux
Foundation, A2A enables agents from different providers to discover each other’s capabilities,
delegate tasks, and collaborate on complex workflows without requiring custom integration work.

The protocol complements rather than competes with Model Context Protocol. Whilst MCP focuses
on connecting AI models to tools and data sources, A2A specifically handles agent-to-agent
communication. This distinction becomes important as organisations move towards multi-agent
architectures where specialised agents collaborate to accomplish complex tasks requiring diverse
capabilities.

A2A’s design centres around “Agent Cards” that advertise capabilities in JSON format, enabling
dynamic task delegation between agents. The protocol supports various modalities including text,
audio, and video streaming, with built-in security features for enterprise deployment. Industry backing
from over 150 organisations, including major hyperscalers, technology providers, and consulting firms,
suggests strong momentum for adoption.

We’ve placed A2A in Trial because whilst the protocol shows clear potential and has impressive
industry support, it remains relatively new with limited production deployment patterns. Early
implementations suggest promise for organisations building complex multi-agent systems, but teams
should evaluate whether their use cases truly require agent-to-agent communication versus simpler
architectures. For most organisations, starting with MCP for tool integration before exploring A2A for
multi-agent scenarios represents a sensible progression path.

A2A

9

Languages & frameworks

We’ve placed DeepEval in the Trial ring as it addresses a critical gap in AI application development:
the systematic evaluation of Large Language Model outputs. While traditional software testing
frameworks focus on deterministic outcomes, DeepEval provides a comprehensive toolkit for
assessing the reliability, accuracy and consistency of AI-generated content.

The framework stands out for its practical approach to testing LLM applications, offering built-in
metrics for evaluating responses across dimensions like relevance, toxicity and factual accuracy.
What particularly impressed our committee was its ability to handle both unit and integration
testing scenarios, making it valuable for teams building production-grade AI systems. However, we
recommend starting with smaller, non-critical components first, as best practices around LLM testing
are still emerging and the framework itself is relatively new to the ecosystem.

DeepEval

LlamaIndex, formerly known as GPT Index, is a framework that supports developers in connecting
large language models with external data sources in a structured way. It provides tools to build
indices, data structures that help LLMs access relevant information efficiently, thereby improving their
ability to handle specific tasks requiring contextual or domain-specific data.

We consider LlamaIndex suitable for teams trialling methods to augment LLM performance, especially
in data-centric applications. While its modular design and focus on customisation are appealing, its
relative maturity as a toolkit means that teams may encounter challenges around documentation,
setup, or adapting it to complex datasets. As with many emerging tools, its value depends on careful
experimentation and matching it to the right problem space.

LlamaIndex

Assess
These languages and frameworks represent emerging or specialized technologies that may be worth
considering for specific use cases. While they offer interesting capabilities, they require careful
evaluation due to limited adoption, specialized requirements, or uncertain long-term viability.

We’ve placed Prolog in the Assess ring of our languages quadrant due to its renewed relevance in
AI development, particularly for adding structured logical reasoning capabilities to Large Language
Model applications, and decoupling logic from procedure. Prolog (and logic programming in general)
may offer significant value due to its ability to extract from and represent knowledge graphs,
which have a well-studied symbiotic relationship with LLMs, allowing us to couple the versatility
of LLMs with the ability to have a concrete expert knowledge base to prevent hallucinations, reify
concrete rules, etc. This also can allow LLMs to produce consumable data for further engineering
needs, and allows us to express preferences in our systems in unambiguous ways. The use of
such expert systems alongside LLMs has been likened to Kahneman’s system 1 and 2. Finally, the
metaprogramming & dynamic capabilities of Prolog are extremely strong.

While Prolog has been around since the 1970s, we’re seeing interesting experiments where
developers combine its powerful symbolic reasoning with modern LLMs to create more robust and
explainable AI systems, by leveraging Prolog as a reasoning agent. However there are challenges
around performance, as well as some redundancy in knowledge graphs given the existence of
semantic web languages such as RDF, OWL, SPARQL, etc. Prolog is also not the only language of its
kind– there are many kinds of logic language, which are all fundamentally different from each other
(E.G., some are used for induction as in SATs, some don’t use the same kinds of logic), though this

Prolog

10

Languages & frameworks

does not necessarily discount Prolog’s utility. Since Prolog interoperates extremely well with most
other programming languages, it can also be embedded within applications rather easily.

The renewed interest doesn’t yet warrant a higher ring placement, as adoption patterns are still
emerging and the tooling ecosystem needs maturation. However, we believe technical teams should
assess Prolog’s potential, especially for projects where transparent logical reasoning needs to be
combined with LLM capabilities. Teams working on applications in regulated industries or those
requiring auditable decision paths may find particular value in exploring this approach. At the very
least, surveying Prolog provides insight into the possibilities of where historical findings might enrich
the current space.

We’ve placed JAX in our Assess ring as we observe increasing interest in this ML framework that
combines NumPy’s familiar API with hardware acceleration and automatic differentiation. While
TensorFlow and PyTorch remain dominant in the ML ecosystem, we’re seeing JAX gain traction
particularly in research settings and among teams working on custom ML architectures.

What interests us about JAX is its functional approach to ML computation and its ability to compile to
multiple hardware targets through XLA (Accelerated Linear Algebra). The framework shows promise
for projects requiring high-performance numerical computing, though we suggest careful evaluation
of its relative immaturity in areas like deployment tooling and the smaller ecosystem of pre-built
components compared to more established frameworks. We recommend teams experimenting with
JAX do so on research projects or contained proofs-of-concept before considering broader adoption.

JAX

We’ve placed LangChain and its companion LangGraph in the Assess ring as they represent an
emerging approach to building applications with Large Language Models. These frameworks provide
structured ways to compose AI capabilities into more complex applications, with LangChain focusing
on general-purpose AI interactions and LangGraph extending this to handle more sophisticated multi-
step processes.

While these tools have gained significant adoption and show promise in reducing boilerplate code
when working with LLMs, we recommend careful evaluation before widespread use. The rapid pace
of change in the underlying AI platforms means that some of LangChain’s abstractions may become
outdated or less relevant as the ecosystem evolves. We’ve observed teams successfully using these
frameworks for prototypes and smaller production systems, but also encountering challenges when
requirements grow more complex or when they need to debug unexpected behaviours. Consider
starting with focused experiments that test whether these tools truly simplify your specific use case
rather than assuming they’re the right choice for all AI development.

LangChain & LangGraph

We’ve placed PydanticAI in the Assess ring of our Languages & Frameworks quadrant because it
represents a promising approach to building AI applications that merits closer examination, while not
yet being broadly proven in production environments.

PydanticAI brings the well-regarded developer experience of FastAPI to generative AI application
development. Built by the team behind Pydantic (which has become a foundation for many AI
frameworks including OpenAI SDK, Anthropic SDK, LangChain, and others), it offers a familiar,
Python-centric approach to building LLM-powered applications. The framework provides important
features like model-agnostic support across major LLM providers, structured responses through
Pydantic validation, and a dependency injection system that facilitates testing.

PydanticAI

11

Languages & frameworks

What particularly interests us is how PydanticAI leverages existing Python patterns and best practices
rather than introducing completely new paradigms. This could significantly lower the learning curve
for developers working with AI. However, as a relatively new framework in a rapidly evolving space,
we’re placing it in Assess while we watch for broader adoption, community growth, and production-
proven implementations across different use cases. Organisations with Python-based stacks and
teams familiar with FastAPI or Pydantic should consider evaluating PydanticAI for their AI application
development needs.

We’ve placed smolagents in the Assess ring of the Languages & Frameworks quadrant based on our
evaluation of its current state and potential.

This lightweight agent framework takes a minimalist approach with its core codebase of under 1,000
lines. Early feedback suggests it can be effective for quickly prototyping agentic concepts before
transitioning to more robust frameworks like AutoGen or LangGraph for production implementations.
The framework’s code-based agent approach, where agents execute actions as Python code
snippets, appears to reduce the number of steps and LLM calls in certain scenarios, though this
comes with inherent security considerations.

We’ve positioned smolagents in Assess rather than Trial for several reasons: it lacks extensive
production validation, the security implications of code execution require careful evaluation, and while
benchmark results with models like DeepSeek-R1 are interesting, we need to see more diverse real-
world implementations. Teams exploring agent architectures should evaluate whether SmolaGents’
approach aligns with their specific needs and security requirements, whilst recognising its limitations
for production-grade systems.

Smolagents

We’ve placed CrewAI in the Assess ring of the Languages & Frameworks quadrant because it
represents a promising approach to multi-agent orchestration that’s gaining traction among
developers building complex AI systems.

Crew.ai provides a framework for creating teams of specialised AI agents that work together
to accomplish tasks through coordinated effort. Our team members report that it offers a well-
structured approach to defining agent roles, communication patterns, and task delegation: addressing
many of the challenges involved in building effective agentic systems. The framework’s emphasis on
human-in-the-loop integration, along with the ability to combine specialised agents with different
capabilities, makes it particularly valuable for complex workflows where single-agent solutions fall
short.

While Crew.ai shows significant promise and has already been used successfully in production
environments, we’ve placed it in Assess rather than Trial because the multi-agent paradigm itself is
still evolving. Organisations need to carefully evaluate whether the added complexity of managing
multiple agents offers sufficient benefits over simpler approaches for their specific use cases.
Teams should also be aware that best practices for agent collaboration are still emerging, and
implementations may require considerable tuning and oversight to achieve reliable results.

CrewAI

12

Languages & frameworks

We have placed TensorFlow in the Hold ring for several reasons. While TensorFlow remains a
capable deep learning framework that helped popularise machine learning at scale, we’re seeing
teams struggle with its steep learning curve and complex deployment story compared to more
modern alternatives. The framework’s verbose syntax and intricate architecture often lead to longer
development cycles, particularly for teams new to machine learning.

PyTorch has emerged as the clear community favourite for both research and production
deployments, with a more intuitive programming model and better debugging capabilities.
Additionally, with the rise of AI platforms that abstract away much of the underlying complexity, many
teams no longer need to work directly with low-level frameworks like TensorFlow. For new projects,
we recommend exploring higher-level tools or PyTorch unless there are compelling reasons to use
TensorFlow, such as maintaining existing deployments or specific requirements around TensorFlow
Extended (TFX) for ML pipelines.

TensorFlow

We have placed Keras in the Hold ring primarily due to its transition from a standalone deep learning
framework to becoming more tightly integrated with TensorFlow, along with the emergence of more
modern alternatives that offer better developer experiences.

While Keras served as an excellent entry point for many developers into deep learning, providing an
intuitive API that made neural networks more accessible, the landscape has evolved significantly.
Frameworks like PyTorch have gained substantial momentum, offering clearer debugging, better
documentation and a more Pythonic approach. Additionally, recent high-level frameworks such as
Lightning and FastAI provide similar ease-of-use benefits while maintaining closer alignment with
current best practices in deep learning development. For new projects, we recommend exploring
these alternatives rather than investing in Keras-specific expertise.

Keras

Despite R’s historical significance in data science and statistical computing, we’ve placed it in the
Hold ring for new projects. While R remains capable for statistical analysis and data visualisation,
we’re seeing its adoption declining in favour of Python’s more comprehensive ecosystem for machine
learning and AI workflows.

The key factors driving this recommendation are the overwhelming industry preference for Python-
based ML frameworks, the stronger integration of Python with modern AI platforms and tools, and
the challenges of hiring R specialists in today’s market. While R retains some advantages for specific
statistical applications and academic research, we believe teams starting new AI initiatives will benefit
from standardising on Python to maximise their access to cutting-edge AI libraries, tools, and talent.

R

Hold
These languages and frameworks are not recommended for new projects due to declining relevance,
better alternatives, or limited long-term viability. While some may still have niche applications, they
generally represent technologies that have been superseded by more effective solutions.

13

Languages & frameworks

We’ve placed OpenCL in the Hold ring of our Languages & Frameworks quadrant. While OpenCL
(Open Computing Language) was groundbreaking when introduced as a standard for parallel
programming across different types of processors, we believe teams should look to alternatives for
new projects.

Despite its promise of write-once-run-anywhere code for GPUs, CPUs, and other accelerators,
OpenCL has seen declining industry support and faces significant challenges. Major hardware
vendors have shifted their focus to more specialised frameworks like CUDA for NVIDIA hardware,
while newer alternatives such as SYCL and modern GPU compute frameworks offer better developer
experiences with similar cross-platform benefits. The complexity of the OpenCL programming model,
combined with inconsistent tooling support and a fragmented ecosystem, makes it increasingly
difficult to justify for new development compared to more actively maintained alternatives.

OpenCL

14

Techniques

ADOPT
18. Classical ML
19. RAG
20. LLM-as-a-judge
21. BERT variants
22. Few-shot prompting

TRIAL
23. Cross-encoderreranking
24. Chain of thought (CoT)
25. Model distillation & synthetic data
26. UMAP

ASSESS
27. Structured RAG
28. Hypothetical document
embeddings (HyDE)
29. Fine-tuning with LoRA
30. Agentic tool use

HOLD
31. Word2Vec & GloVe
32. t-SNE
33. Zero-shot prompting
34. AI pull request review

AI methodologies, approaches, and practices that shape how we build intelligent systems.

ADOPT TRIAL ASSESS HOLD

18

19
20

21

22 23

24

25

26

27

28

29

30

31

32

33

34

Adopt
18. Classical ML
19. RAG
20. LLM-as-a-judge
21. BERT variants
22. Few-shot prompting

Trial
23. Cross-encoder reranking
24. Chain of thought (CoT)
25. Model distillation & synthetic data
26. UMAP

Assess
27. Structured RAG
28. Hypothetical document embeddings (HyDE)
29. Fine-tuning with LoRA
30. Agentic tool use

Hold
31. Word2Vec & GloVe
32. t-SNE
33. Zero-shot prompting
34. AI pull request review

15

Techniques

We continue to see tremendous value in classical machine learning approaches like random forests,
gradient boosting (XGBoost, LightGBM), linear/logistic regression and support vector machines for
many business problems. While attention has shifted dramatically towards deep learning and large
language models in the last couple of years, these traditional techniques often provide the best
balance of explainability, computational efficiency, and performance for structured data problems.

The key advantages that keep classical ML firmly in our Adopt ring include faster training times, lower
computing requirements, and easier deployment compared to deep learning approaches. However,
it’s important to recognise that realising these benefits requires both quality training data and staff
with appropriate expertise. Unlike the recent wave of LLM-based solutions that have democratised AI
capabilities for organisations without extensive data science teams, classical ML continues to demand
specialised knowledge in feature engineering, model selection, and evaluation.

For organisations with the necessary data assets and technical capabilities, these methods work
well even with the smaller datasets common in enterprise settings, often matching or exceeding
the performance of more complex approaches while remaining more interpretable to stakeholders
and easier to maintain. Their lower training costs, smaller carbon footprint, and built-in feature
importance metrics provide practical advantages that directly translate to business value, particularly
as organisations face increasing pressure to make their ML systems both cost-effective and
environmentally sustainable.

Classical ML

Retrieval-Augmented Generation (RAG) is an AI approach that combines search and text generation to
produce more accurate responses. The approach helps prevent confabulation, cases where AI models
generate plausible but incorrect information, by grounding responses in real data.

We’re placing RAG in the Adopt ring because it addresses key challenges in deploying AI systems in
information retrieval contexts. The technique is particularly valuable when accuracy and traceability
of information are crucial, such as in customer service, technical documentation, or compliance
scenarios. While implementing RAG requires careful attention to document processing and embedding
strategies, the widespread availability of tools and frameworks has significantly lowered the barriers
to adoption. Teams should consider RAG as a foundational technique when building AI applications
that need to leverage organisational knowledge.

We’re particularly interested in monitoring how this technique develops alongside others improving
AI system reliability and truthfulness. For example, by augmenting the approach with Self-RAG to
recognise when more evidence needs to be gathered, conflicting information verified, or responses
refined for better accuracy. This ‘self-criticism’ mechanism has shown promising results in improving
response quality and reducing hallucinations.

See also Cross-encoder reranking, Chain of thought, Structured RAG.

RAG

Adopt
These techniques represent mature, well-supported approaches that are ready for production use.
They offer excellent performance, extensive documentation, and proven track records in real-world
applications.

16

Techniques

We’ve placed LLM-as-a-judge in the Adopt ring because it has quickly proven itself to be one of the
most practical and cost-effective techniques for evaluating AI system outputs. At first glance, it might
seem like circular reasoning to have one LLM evaluate another LLM’s work. However, the capabilities
of today’s strongest models are such that they can provide nuanced, multidimensional critique that
simpler evaluation methods cannot match, except when using very constrained metrics like exact
match or BLEU scores (Bilingual Evaluation Understudy, a method for automatically evaluating
machine translations).

This technique has become widely adopted in both offline and online evaluation scenarios. In offline
evaluation, it scales far better than human assessment, allowing teams to test thousands of outputs
quickly during development and quality assurance workflows. In online scenarios, an LLM judge can
evaluate another LLM’s output in real-time in production, enabling dynamic workflow adjustments
or user experience modifications based on quality assessments. This real-time evaluation approach
serves as a foundation for more sophisticated agentic workflows, where multiple AI components
collaborate to refine outputs before user delivery.

Recent research demonstrates that the current frontier models can provide judgements that correlate
strongly with human preferences across many common evaluation dimensions. For best results,
we recommend using a different LLM as the judge than the one being evaluated, and viewing this
approach as an augmentation to, not replacement for, human evaluation. The strongest LLMs can
identify nuanced issues in reasoning, factuality, and tone that would otherwise require substantial
human review time, creating a more efficient evaluation pipeline whilst preserving critical human
oversight for final quality assurance.

LLM-as-a-Judge

Bidirectional Encoder Representations from Transformers (BERT) revolutionised Natural Language
Processing (NLP) by allowing AI models to process human language by looking at words in relation
to their entire context, rather than just left-to-right or right-to-left. Think of it like a reader who
can understand a word by looking at all the surrounding words for context, rather than reading
sequentially. The original BERT spawned a family tree of variants, with ModernBERT representing
the latest evolution. Released in late 2024, ModernBERT improves legacy BERT through architectural
updates which shorten training times and improve accuracy.

BERT-style models serve fundamentally different purposes than generative models like GPT. While
GPT models excel at generating text and conversational interactions, BERT models are optimised
for understanding and analysis tasks such as classification, named entity recognition, and sentiment
analysis. They’re particularly valuable for creating semantic vector embeddings that capture text
meaning in numerical form, making them essential components in Retrieval Augmented Generation
(RAG) systems. In these pipelines, BERT embeddings help retrieve relevant information that is then
fed as text to GPT models for generation: the models don’t directly share embeddings, but rather
work in complementary roles.

We particularly recommend DeBERTa for organisations starting new NLP projects. It handles word
relationships more effectively using a disentangled attention mechanism and enhanced position
encoding. DistilBERT is smaller and faster whilst retaining most of the model’s performance, so it is
particularly valuable for production deployments where latency requirements are strict or computing
resources are limited, such as edge devices or high-throughput API services.

For organisations choosing between BERT and GPT models, consider your specific use case: BERT
models require fewer computational resources for inference and excel at precise understanding

BERT variants

17

Techniques

tasks, while GPT models offer impressive out-of-the-box generation capabilities through accessible
APIs. Many sophisticated AI applications today use both types in complementary roles, BERT for
understanding and information retrieval, and GPT for generation based on that understanding.

There are options for specialised domains like biomedical (BioBERT) or financial text (FinBERT). While
these can outperform general models in their niches, they often require significant expertise to use
effectively and may need additional tuning for specific use cases.

The technique of providing examples to guide an AI model’s responses has proven consistently
effective across different Large Language Models. By showing the model a few examples of desired
input-output pairs, developers can achieve more reliable, consistent, and contextually appropriate
responses without resorting to complex prompt engineering or fine-tuning.

The method’s strength lies in its simplicity and portability across different AI platforms. Our team
members report significantly improved results when moving from zero-shot (no examples) to few-
shot approaches, particularly for tasks requiring specific formats, technical terminology, or domain
expertise. While the optimal number of examples varies by use case, we typically see diminishing
returns beyond 3-5 examples. The main trade-off to consider is token consumption, as each example
uses up context window space that could be used for other content.

Few-shot prompting

Trial
These techniques show promising potential with growing adoption and active development. While
they may not yet have the same maturity as Adopt techniques, they offer innovative approaches and
capabilities that make them worth exploring for forward-thinking teams.

Cross-encoder reranking sits in our Trial ring as a promising enhancement for AI search and chat
systems. It works alongside traditional embedding-based search (where documents and queries are
converted into numbers that represent their meaning) by taking a closer look at the initial search
results. While embedding search is fast and good at finding broadly relevant content, cross-encoder
reranking excels at understanding subtle relevance signals by looking at the query and potential
results together.

Most teams we’ve observed use this as a two-step process: first, a quick embedding search finds
perhaps 50-100 potentially relevant items from their knowledge base. Then, cross-encoder reranking
carefully sorts these candidates to bring the most relevant ones to the top. While this additional step
does add some processing time, we’re seeing it deliver meaningful improvements in result quality
across various use cases.

The technique has shown consistent improvements across different domains and use cases, often
reducing hallucinations in downstream LLM responses by ensuring higher quality context selection.
Implementation has also become more straightforward with libraries like sentence-transformers
providing ready-to-use models. However, teams should be mindful of the additional latency
introduced by the reranking step and may need to tune the number of candidates passed to the re-
ranker based on their specific performance requirements. The computational overhead is generally
justified by the marked improvement in retrieval quality, making this a reliable enhancement to any
RAG pipeline where response accuracy is a priority.

Cross-encoder reranking

18

Techniques

Chain of Thought (CoT) sits in our Trial ring as a proven technique for improving the reasoning
capabilities of large language models, where they are required.

This technique involves prompting an AI model to show its step-by-step reasoning process rather
than jumping straight to a conclusion. Think of it like asking a student to show their working when
solving a problem, rather than just writing down the final answer. Essentially, CoT encourages models
to explain their thought process in a structured manner, rather than jumping directly to a conclusion.
This has shown to be especially useful in tasks that require complex reasoning, such as mathematical
problem-solving or logical inference.

We’ve placed CoT in the Trial ring because it has shown promising results in improving the
interpretability and accuracy of AI responses when faced with complex tasks. However, it’s worth
noting that CoT typically requires more tokens (and thus more cost) than direct prompting, and isn’t
always necessary for simple tasks. We recommend using it selectively where the complexity of the
task warrants the additional computation and cost. Newer ‘reasoning’ models such as o1 and o3 are
specifically built to work with CoT behind the scenes and have very impressive benchmarks at logic/
coding tests at the cost of being quite slow and expensive.

We’re keeping an eye on related techniques such as LLMs as Method Actors, which achieves similar
goals by treating LLMs as actors requiring prompts and cues. However, we caution that this and
similar techniques typically require longer, more carefully crafted prompts, which increases token
usage and costs. We’re also watching for evidence of whether they consistently outperform simpler
prompting approaches in production environments.

Chain of thought (CoT)

We’ve placed Model Distillation in the Trial ring of our Techniques quadrant. Distillation involves
training a smaller, more efficient model to mimic a larger one. A common emerging pattern we’re
seeing is using LLMs to generate synthetic training data for this smaller model. The larger LLM acts
as a “teacher,” creating diverse, high-quality examples that can help the “student” model learn the
desired behaviour. For instance, a large model might generate thousands of question-answer pairs
that are then used to train a more compact model for a specific domain.

This creates an interesting synergy: the large LLM’s ability to generate varied, nuanced responses
helps create richer training datasets than might otherwise be available, while distillation makes the
resulting solutions more practical to deploy. This approach makes AI deployment more practical and
cost-effective, especially for edge devices or resource-constrained environments. However, we’re
keeping it in trial as the process still requires considerable expertise to execute well. Teams need
to carefully validate the quality of generated training data and ensure the distilled model maintains
acceptable performance levels. There’s also ongoing debate about potential amplification of biases or
errors through this approach.

Be sure to check the licence of the model you’re using for distillation. Llama forbids the use of its
output to train other models. The launch of DeepSeek R1 in January 2025 brought distillation into
popular consciousness, as it has been widely assumed that it represents a distillation of existing
Foundation models.

Model distillation & synthetic data

19

Techniques

UMAP (Uniform Manifold Approximation and Projection) enters our Trial ring as a promising
dimensionality reduction technique that’s gaining traction in the AI community. While t-SNE has been
the go-to choice for visualising high-dimensional data, UMAP offers better preservation of global
structure and runs significantly faster, making it particularly valuable for large-scale AI applications
like exploring embedding spaces and analysing neural network activations.

We’re seeing successful applications of UMAP across several AI projects, especially in combination
with clustering algorithms for understanding large language model behaviours and exploring semantic
relationships in vector spaces. However, we recommend starting with smaller, well-understood
datasets when first adopting UMAP, as its parameters can be sensitive and require careful tuning
to avoid misleading visualisations. The technique shows enough promise and maturity to warrant
serious evaluation, though teams should be prepared to invest time in understanding its mathematical
foundations to use it effectively.

The Python UMAP library provides extensive documentation and explanation. There are also libraries
for Rust, Java, and R among others.

UMAP

Structured RAG extends basic RAG by organising knowledge in a more formal way, rather than just as
chunks of text. Think of it like the difference between a filing cabinet (basic RAG) and a well-designed
database (structured RAG). Instead of just retrieving text fragments, structured RAG can work with
specific fields, relationships, and hierarchies in your data. For example, in a product catalogue, it
could separately track and retrieve product names, prices, specifications, and reviews, understanding
how these elements relate to each other.

The key advantages we’re seeing in real-world applications include more consistent outputs,
better handling of complex queries, and reduced confabulation rates compared to traditional RAG
approaches. While implementations can vary, successful patterns are emerging around using JSON
schemas, XML structures, or database-like organisations for retrieved information.

However, implementing structured RAG requires more upfront work in data organisation and schema
design than traditional RAG. Teams need to carefully consider their data structures and retrieval
patterns. This additional complexity is why we’ve placed it in Assess rather than Trial: while the
benefits are clear, implementation patterns are still evolving.

Structured RAG

We’ve found HyDE (Hypothetical Document Embeddings) to be an elegant solution to a common
problem in search systems - their tendency to perform poorly when searching content that differs
from their training data. HyDE works by first asking a large language model to imagine what an ideal
document answering the user’s query might look like. This ‘hypothetical document’ helps bridge the
gap between how users naturally ask questions and how information is actually written in documents.

The system creates several of these imagined documents (typically five) to capture different ways

Hypothetical document embeddings (HyDE)

Assess
These techniques represent emerging or specialized approaches that may be worth considering for
specific use cases. While they offer interesting capabilities, they require careful evaluation due to
limited adoption, specialized requirements, or uncertain long-term viability.

20

Techniques

the answer might be expressed. These are converted into numerical representations (embeddings)
and averaged together. This averaged representation is then used to find real documents that are
mathematically similar, which often leads to more relevant search results than traditional methods.
The approach has proven particularly effective as part of larger systems, such as RAG (Retrieval
Augmented Generation), where accurate document retrieval is crucial for generating reliable
responses. Teams should evaluate HyDE particularly for cases where high-precision retrieval is crucial
and the additional latency is acceptable.

See also: RAG, BERT

We have placed Low-Rank Adaptation (LoRA) in the Assess ring. LoRA represents a significant
advancement in making AI model customisation more practical and cost-effective. Rather than
adjusting all parameters in a large language model (which can number in the billions), LoRA adds a
small set of trainable parameters while keeping the original model unchanged. Think of it like teaching
an expert to adapt to your specific needs without having to retrain their entire knowledge base. This
approach typically reduces the computing resources needed for customisation by 3-4 orders of
magnitude while maintaining most of the performance benefits of full fine-tuning.

The technique has proven its value across numerous enterprise applications, and robust tools like
Lightning AI’s lit-gpt and axolotl have emerged to support implementation. However, we place it
in the Assess ring rather than Trial because successfully applying LoRA still requires significant
machine learning expertise and careful consideration of training data quality. Additionally, we caution
organisations to view fine-tuning (including with LoRA) as a short-term investment rather than a long-
term strategy. Fine-tuning typically ties you to a specific model architecture, and given the rapid pace
of AI advancement, tomorrow’s general-purpose models may well outperform your carefully tuned
older models with no customisation at all. Migrating fine-tuned weights between different model
architectures is particularly challenging and requires a well-curated evaluation corpus. While LoRA is
a valuable technique to have in your toolkit, it should only be deployed when the immediate business
value clearly outweighs both the technical and opportunity costs.

Fine-tuning with LoRA

We’ve placed agentic tool use in the Assess ring. This technique involves Large Language Models
using external tools and APIs to augment their capabilities beyond pure language processing.

The ability of LLMs to use tools represents a significant advancement in AI system architecture. We’re
seeing promising applications where LLMs act as orchestrators, calling specialised tools for tasks like
web search, code execution, or API interactions. However, current implementations often struggle
with reliability and can make unpredictable tool choices. While frameworks like LangChain, OpenAI’s
Function Calling, and standards like Model Context Protocol have made tool use more accessible,
organisations should carefully evaluate their specific use cases and implement robust validation
mechanisms before deploying tool-using LLMs in production environments.

The decision to place this in Assess reflects both its potential and current limitations. Early adopters
are reporting success with contained, well-defined tool sets, particularly in areas like web search and
file operations. However, we must emphasise the substantial security risks associated with agentic
tool use, especially in environments where malicious actors might attempt to manipulate these
systems. It is only a matter of time before poorly secured implementations lead to significant security
incidents, with potential for data breaches, unauthorised system access, or service disruption.

When implementing agentic tool use, several key aspects warrant consideration. Tool selection

Agentic tool use

21

Techniques

should be limited to essential, well-tested integrations with comprehensive input validation and
output verification in place. Organisations must implement strict access controls, rate limiting, and
continuous monitoring of tool usage patterns to detect potential misuse or exploitation attempts. All
tool-using agents should operate within sandboxed environments with ‘principle of least privilege’
enforcement. Security considerations should be paramount in design decisions, with regular
penetration testing to identify vulnerabilities before they can be exploited. Additionally, organisations
should plan for graceful fallbacks when tools are unavailable or return unexpected results, ensuring
system resilience even when tool interactions fail.

Hold
These techniques are not recommended for new projects due to declining relevance, better
alternatives, or limited long-term viability. While some may still have niche applications, they generally
represent approaches that have been superseded by more effective solutions.

We’ve placed both GloVe (Global Vectors for Word Representation) and Word2Vec (Word to
Vector) in the Hold ring of our techniques quadrant. While these word embedding techniques
were groundbreaking when introduced and served as fundamental building blocks for many NLP
applications, they have been largely superseded by more advanced approaches.

These older embedding techniques, though computationally efficient, lack the contextual
understanding that modern transformer-based models provide. Modern large language models and
contextual embeddings like BERT produce more nuanced representations that capture word meaning
based on surrounding context, rather than the static embeddings that GloVe and Word2Vec generate.
For new projects, we recommend exploring more recent embedding techniques (see “BERT Variants”
in our Adopt ring) unless you have very specific constraints around computational resources or model
size that make these older approaches necessary.

Word2Vec & GloVe

We’ve placed t-SNE (t-distributed Stochastic Neighbor Embedding) in the Hold ring of our techniques
quadrant. While t-SNE was groundbreaking when introduced for visualising high-dimensional data in
lower dimensions, particularly for understanding the internal representations of neural networks, we’re
seeing its limitations become more apparent in modern AI workflows.

The core issue is that t-SNE can be misleading when interpreting AI model behaviour, as it prioritises
preserving local structure at the expense of global relationships. This can lead teams to draw
incorrect conclusions about their models’ decision boundaries and feature representations. We’re
increasingly recommending alternatives like UMAP (Uniform Manifold Approximation and Projection),
which better preserves both local and global structure while offering superior computational
performance. For projects requiring dimensionality reduction and visualisation of AI model internals,
we suggest exploring these newer techniques rather than defaulting to t-SNE.

t-SNE

Zero-shot prompting – asking Large Language Models to perform tasks without examples or training
– has been a quick way to get started with AI. However, we strongly recommend against using
zero-shot prompts in production without appropriate guardrails and safety measures. We’ve heard
of multiple incidents where unprotected prompts led to harmful, biased or inappropriate outputs,
potentially exposing organisations to significant risks.

Zero-shot prompting

22

Techniques

Our view is that zero-shot prompting should always be combined with input validation, output filtering
and clear usage policies. While it can be valuable for prototyping and exploration, moving to few-shot
prompting or fine-tuning with careful guardrails is a more robust approach for production systems.
The current placement in “Hold” reflects our concern about organisations rushing to deploy unsafe
prompt patterns rather than taking the time to implement proper controls.

We’ve placed AI Pull Request Review in the Hold ring. Whilst AI tools can catch basic issues like style
violations and potential bugs, they fall short in the crucial aspects of PR review that maintain code
quality and team effectiveness. The key point is that PR review isn’t just about finding errors: it’s a
vital knowledge-sharing mechanism where senior developers mentor juniors, architectural decisions
are questioned and refined, and the team maintains a shared understanding of the codebase.

Based on our observations across multiple teams, AI review tools tend to focus on surface-level
feedback while missing deeper architectural issues, implementation trade-offs, and business logic
errors that human reviewers catch. More concerning is that teams who rely heavily on AI reviews
often see a decline in collective code ownership and technical knowledge sharing.

The recent explosion of AI coding assistants has revealed that whilst they are sometimes helpful
for tasks like code completion and refactoring, they struggle with higher-level software engineering
decisions that require deep context and experience. As one tech lead noted in our research, “AI can
tell you if your code follows patterns, but it can’t tell you if you’re using the right patterns in the first
place.” Until AI systems can better understand architectural implications and business context, we
recommend maintaining human-driven code reviews as a core practice.

AI pull request review

23

Tools

ADOPT
35. Software engineering copilots
36. Provider-agnostic LLM facades
37. Notebooks

TRIAL
38. MLflow
39. Vector databases
40. Local model execution environments

ASSESS
41. AI application bootstrappers
42. Agentic computer use
43. Lakera

HOLD
44. Conversational data analysis

Software tools and utilities that enhance AI development workflows, from coding assistants to
data analysis platforms. These tools help developers build, test, and deploy AI applications more
efficiently.

ADOPT TRIAL ASSESS HOLD

35

36
37

38

39

40

41

42

43

44

Adopt
35. Software engineering copilots
36. Provider-agnostic LLM facades
37. Notebooks

Trial
38. MLflow
39. Vector databases
40. Local model execution environments

Assess
41. AI application bootstrappers
42. Agentic computer use
43. Lakera

Hold
44. Conversational data analysis

24

Tools

AI-powered coding assistants have become essential development tools, spanning traditional IDE
integrations like GitHub Copilot and Tabnine, standalone environments such as Cursor, Windsurf, and
Zed, and command-line tools including Aider, Cline, Claude Code, Gemini CLI and OpenAI Codex.
Cody focuses on enterprise-scale codebase understanding, Traycer emphasises upfront planning
for complex tasks, and Kiro offers both open-ended coding and structured specification-driven
development modes, whilst Warp reimagines the terminal experience with AI-enhanced command
suggestions.

Two distinct approaches have emerged: free-form “vibe coding” and structured development
methodologies. Kiro exemplifies this choice by offering both approaches: a conversational coding
mode for rapid iteration and a dedicated specs mode where AI assists developers in drafting
requirements, design decisions, and task breakdowns through three specification files before code
generation. Cursor enables teams to codify standards through .cursorrules, embedding architectural
patterns and guidelines directly into AI assistance.

Usage patterns reveal that senior engineers derive greater value by leveraging AI for routine tasks
whilst maintaining quality oversight. Junior developers frequently struggle to evaluate AI suggestions,
occasionally accepting flawed implementations or overlooking edge cases. This suggests
organisational training requirements around effective AI collaboration.

We’ve placed Software Engineering Copilots in the Adopt ring based on demonstrable productivity
improvements, particularly for experienced developers. Teams report meaningful gains on routine
coding tasks, though success correlates with careful workflow integration and rigorous code review
practices.

Organisations should implement a “trust but verify” approach: utilise AI assistance for initial
implementation whilst maintaining testing standards. The shift towards AI-augmented development
appears permanent, making delayed adoption a competitive risk, though teams should remain
adaptable as innovation continues across the ecosystem.

Software engineering copilots

The LLM landscape evolves rapidly, making today’s optimal choice potentially outdated within
months. We recommend implementing a facade pattern between your application and LLM providers,
rather than building directly against specific APIs. This approach reduces vendor lock-in and enables
easier testing of alternative models as they emerge. When considering whether to write your own
code, be sure to consider tools such as the lightweight AISuite, Simon Willison’s LLM library and CLI
tool, or heavyweight alternatives such as LangChain and LlamaIndex.

This recommendation reflects our team’s experience seeing projects hampered by tight coupling to
specific LLM providers, and the subsequent maintenance burden when transitioning to newer, more
capable models.

Provider-agnostic LLM facades

Adopt
These tools represent mature, well-supported technologies that are ready for production use. They
offer excellent productivity gains, extensive documentation, and proven track records in real-world
development workflows.

25

Tools

We’ve placed Notebooks in the Adopt ring because they have become the de facto standard for data
science and machine learning experimentation, prototyping, and documentation. The interactive
nature of notebooks, combining code execution with rich text explanations and visualisations, makes
them particularly valuable for AI/ML workflows where iterative exploration and clear documentation of
model development are essential.

Widespread adoption across both industry and academia, plus an extensive plugin ecosystem and
integration with popular AI frameworks, demonstrates their maturity as a method of interacting with
code. We especially value how notebooks facilitate collaboration between technical and non-technical
team members, as they can serve as living documents that combine business requirements, technical
implementation, and results in a single, shareable format.

Jupyter notebooks are the most widely used, supporting multiple languages including Python, R
and Julia. The cloud platforms provide their own implementations: Google Colab, AWS Sagemaker
Notebooks, Azure Notebooks, Databricks Notebooks. And there are language specific notebooks,
such as Pluto.jl for Julia, Clerk for Clojure, Polynote for Scala.

Notebooks

We have placed MLFlow in the Trial ring due to its potential as a lightweight and modular option for
teams seeking to manage the machine learning lifecycle. Its open-source nature makes it an attractive
alternative to the more monolithic cloud-based MLOps platforms provided by vendors like AWS,
Microsoft and Google. A key advantage of MLFlow is its ability to avoid vendor lock-in, offering teams
the flexibility to maintain control of their infrastructure and adapt workflows as their needs evolve.

That said, realising the benefits of MLFlow requires teams to have a certain level of technical
expertise to configure and integrate it into their existing systems effectively. Unlike cloud-native
behemoths such as SageMaker or Vertex AI, MLFlow does not provide an all-in-one, plug-and-play
experience. Instead, it offers modular components that must be tailored to specific use cases. We
recommend assessing MLFlow if your organisation values flexibility, has the technical proficiency to
manage integrations, and prefers avoiding dependency on proprietary platforms early in your MLOps
journey.

MLflow

Vector databases have emerged as specialised tools for managing the high-dimensional data
representations (embeddings) required by AI models. They enable efficient similarity search across
text, images, and other content types. Prominent solutions include Pinecone, Qdrant, Milvus and
Weaviate.

We’ve generally placed vector databases in the Trial ring, as they have proven valuable for specific
use cases such as semantic search and recommendation systems. However, their adoption should
be carefully evaluated based on individual requirements. Traditional databases may be sufficient for
simpler operations and avoid the data consistency challenges of keeping embeddings synchronized
with underlying content changes across databases. Alternative approaches, such as Timescale’s PGAI

Vector databases

Trial
These tools show promising potential with growing adoption and active development. While they may
not yet have the same maturity as Adopt tools, they offer innovative approaches and capabilities that
make them worth exploring for forward-thinking teams.

26

Tools

vectorizer, bring vector embedding search directly into the Postgres database, ensuring embeddings
remain synchronised with underlying content changes.

If a vector database is required for your use case, the choice of provider often depends on factors
such as scale requirements, the need for real-time updates, and whether a managed or self-hosted
solution is preferred. Pinecone leads in production readiness but comes with the costs of a managed
service, while open-source alternatives like Qdrant and Milvus offer greater control but demand more
operational expertise.

Tools like Ollama, LM Studio, and AnythingLLM provide accessible ways to run open weight models
on local hardware. These environments enable rapid experimentation with open weight models from
providers including Meta (Llama), Mistral, DeepSeek, Alibaba (Qwen), and OpenAI (gpt-oss) without
API costs or sending data to external services. Many now support advanced capabilities including
web search, tool calling via Model Context Protocol (MCP), and connections to commercial APIs for
hybrid workflows.

These tools serve various evaluation needs: developers testing AI features during development,
teams comparing model responses for specific use cases, and organisations exploring AI capabilities
with sensitive data that cannot leave their infrastructure. The range spans from command-line
interfaces like Ollama to graphical applications like LM Studio, accommodating different technical
backgrounds and preferences.

We’ve placed these in Trial as they offer a valuable alternative approach to model evaluation
alongside cloud-based testing. They’re particularly useful for privacy-sensitive prototyping, offline
development, and scenarios where extensive experimentation would be cost-prohibitive via APIs.
Teams should consider these tools as one option among many for model evaluation, weighing their
benefits against the overhead of local setup and maintenance.

Local model execution environments

We have placed AI Application Bootstrappers like V0, Bolt.new and Replit Agent in the Assess ring of
our Tools quadrant. These tools represent an intriguing new approach to rapidly generating complete
applications from prompts or designs. While they can dramatically accelerate the creation of demos
and proofs of concept, their current limitations lead us to recommend careful assessment before
adoption.

The primary value proposition is clear: the ability to go from concept to working prototype in hours
instead of days or weeks. However, our experience shows that success with these tools correlates
strongly with existing software engineering expertise. Senior developers can effectively use them
as accelerators, understanding how to refactor the generated code, identify potential issues, and
establish proper architectural boundaries. In contrast, junior developers or non-technical users
often struggle with maintaining and evolving the generated codebase, finding themselves unable to
effectively debug issues or make substantial modifications without creating cascading problems.

AI application bootstrappers

Assess
These tools represent emerging or specialized technologies that may be worth considering for
specific use cases. While they offer interesting capabilities, they require careful evaluation due to
limited adoption, specialized requirements, or uncertain long-term viability.

27

Tools

While these tools excel at creating initial implementations, the significant effort required to make
applications production-ready still requires substantial engineering knowledge. We’re particularly
concerned about teams using bootstrapped code as a foundation for production systems without
the expertise to properly evaluate and refactor the generated codebase. The tools are promising but
should be approached with clear understanding of their current limitations and best used by teams
with strong software engineering fundamentals.

Looking ahead, we expect these tools to mature and potentially move into the Trial ring as they
develop better guardrails and more maintainable output. For now, we recommend assessing them
primarily for simple prototyping and proof-of-concept work, while maintaining careful separation
between bootstrapped demos and production codebases.

AI agents that directly interact with computer interfaces represent an intriguing development in AI
tooling. OpenAI’s Operator, integrated into ChatGPT as “agent mode,” and Claude Computer Use
can control web browsers and desktop applications through visual understanding and automated
screen interactions. Development-focused agents like Devin take a different approach, working within
integrated development environments and specialising in code repositories through programmatic
tool interactions.

These systems process screen content through visual analysis, reasoning about current context and
task requirements, then execute mouse clicks, keyboard inputs, and application navigation. While
organisations express significant interest in deploying AI agents, early adopters are encountering
reliability challenges, with success rates declining markedly as task complexity increases and agent
workflows become more extended.

We’ve placed Agentic Computer Use in the Assess ring because whilst the technology demonstrates
clear potential for specific use cases, practical implementation remains challenging. Early
implementations show promise in constrained environments with well-defined boundaries, but teams
report inconsistent results when scaling to more complex workflows or longer chains of automated
activity.

For teams evaluating these tools, we recommend focusing on simple, isolated tasks with clear
success criteria rather than complex multi-step workflows. Maintain human oversight for all
critical operations and establish robust audit trails. The technology merits careful assessment, but
organisations should approach deployment conservatively until reliability and control mechanisms
mature further.

Agentic computer use

Lakera is an AI safety and robustness platform designed to detect and mitigate risks in machine
learning systems. It provides mechanisms for testing, analysis, and quality assurance to help
developers identify weaknesses or vulnerabilities in AI/ML models prior to deployment. This makes
it particularly appealing in contexts where reliability and safety are paramount, such as finance,
healthcare, or any domain subject to compliance constraints.

We have placed Lakera in the Assess ring because while it addresses an important need for AI
safety, the platform has several practical limitations that require careful evaluation. Currently, Lakera
supports only text-based scanning, teams using multimodal AI systems with images, audio, or video
will find gaps in coverage. Custom scanning capabilities for business-specific terms or PII detection
rely on regex patterns rather than context-aware analysis, which can quickly hit limitations in complex
scenarios.

Lakera

28

Tools

Performance considerations vary significantly between deployment options. The SaaS offering
may provide adequate performance for many use cases, but has text size limitations that require
applications to handle chunking. Self-hosted deployments offer more control but require substantial
GPU resources for acceptable performance. Additionally, Lakera’s scanning is non-stateful, each
prompt and response is scanned in isolation without awareness of the broader conversation context,
and only ‘user’ and ‘assistant’ message types are recognised.

Given these constraints, Lakera may provide valuable safety assurance for straightforward text-based
AI applications, but organisations should carefully assess whether its current capabilities align with
their specific AI architectures and safety requirements. We recommend conducting thorough proof-
of-concept testing that includes your specific modalities, custom requirements, and performance
expectations before determining if Lakera fits your use case.

Hold
These tools are not recommended for new projects due to declining relevance, better alternatives,
or limited long-term viability. While some may still have niche applications, they generally represent
technologies that have been superseded by more effective solutions.

Tools such as pandas-ai, tablegpt, promptql, and Julius enable natural language querying of
databases and datasets, offering significant productivity benefits for knowledgeable data analysts.
Modern database-specific Model Context Protocol (MCP) servers can provide substantial context to
models, including schema understanding and data contents. Our experience with JUXT’s own XTDB
database revealed remarkable moments where models navigated complex table structures with
apparent ease, demonstrating genuine potential for accelerating data analysis workflows.

For experienced analysts, these tools represent a meaningful productivity boost, rapidly converting
natural language requests into draft queries that can be refined and optimised. However, our
experience also reveals challenges: generated queries can be inefficient or occasionally incorrect
despite appearing plausible. The technology sometimes struggles with nuanced requirements and
may produce suboptimal approaches that experienced analysts would avoid. Uber’s experience with
their internal QueryGPT tool demonstrates both the potential and the complexity, highlighting the
significant number of example queries and guardrails required to achieve reliable results.

We’ve placed conversational data analysis in the Hold ring not because the technology lacks
value, but because successful deployment requires users capable of understanding and validating
generated queries. These tools offer substantial benefits for data teams with appropriate expertise,
but should be approached cautiously by those unable to review and debug AI-generated database
queries.

For teams with strong analytical capabilities, these tools can meaningfully accelerate exploratory data
analysis and routine query generation, treating AI output as sophisticated first drafts requiring expert
review.

Conversational data analysis

29

Platforms

ADOPT TRIAL ASSESS HOLD

45

4647

48

49

50
51

52

53

54

Adopt
45. Weights & Biases
46. Foundation models
47. Data pipeline orchestration tools
48. Cloud model hosting platforms

Trial
49. Production AI monitoring platforms
50. Open weight LLMs
51. AI-powered workflow automation platforms

Assess
52. Galileo
53. Kubeflow

Hold
54. Building against vendor-specific APIs

ADOPT
45. Weights & Biases
46. Foundation models
47. Data pipeline orchestration tools
48. Cloud model hosting platforms

TRIAL
49. Production AI monitoring platforms
50. Open weight LLMs
51. AI-powered workflow automation
platforms

ASSESS
52. Galileo
53. Kubeflow

HOLD
54. Building agains tvendor-specific
APIs

Infrastructure and platform services that support AI applications, from model hosting to experiment
tracking. These platforms provide the foundation for building, deploying, and managing AI systems at
scale.

30

Platforms

Weights & Biases is a platform designed for tracking and visualising machine learning experiments.
In recent projects, we’ve observed that it provides a robust solution for managing machine learning
workflows, particularly when dealing with complex models and large datasets. Its user-friendly
interface and integration capabilities with popular machine learning libraries make it accessible for
teams looking to improve their model development processes.

We’ve seen how systems such as Weights & Biases can catalyse positive cultural changes in ML
teams. By making experiment tracking very light touch, requiring just a few lines of code, they remove
the friction that sometimes prevents teams from maintaining good measurement practices. When
tracking experiments becomes a natural part of the workflow rather than an extra burden, teams tend
to measure more, compare results more frequently, and generally make more data-driven decisions.

Collaboration features such as shared dashboards and reports amplify these benefits by making
results and insights visible to the whole team. Rather than knowledge being siloed in individual
notebooks or spreadsheets, experiments become shared assets that everyone can learn from. This
visibility often leads to more discussion about results, faster knowledge sharing, and ultimately
quicker iteration cycles as teams build upon each other’s work rather than inadvertently duplicating
efforts. However, it’s important to note that tool adoption alone isn’t enough, teams need to actively
foster a culture that values measurement and experimentation for these benefits to fully materialise.

Weights & Biases

Adopt
These languages and frameworks represent mature, well-supported technologies that are ready for
production use. They offer excellent performance, extensive ecosystems, and proven track records in
real-world applications.

Foundation model providers continue to evolve at a rapid pace. Major players like OpenAI, Anthropic,
Google, and Meta compete alongside emerging organisations such as DeepSeek, Alibaba, IBM and
others. While industry benchmarks help compare these models, they tell only part of the story:
different models excel in different areas, and benchmark results should be viewed as indicative rather
than definitive.

A clear trend has emerged in how providers differentiate their offerings across three distinct tiers:
smaller, faster models (e.g., Claude Haiku, DeepSeek Coder, Qwen Turbo) optimised for speed
and cost; larger, more capable models (e.g., Claude Sonnet, DeepSeek V3, Qwen Max) balancing
capabilities with reasonable response times; and specialised reasoning models (e.g., Claude Sonnet
Extended, OpenAI o1, DeepSeek R1) designed for complex problem-solving. These reasoning
models consume significantly more tokens and command higher per-token costs, but demonstrate
remarkable capabilities in solving challenging logical puzzles, mathematics problems, and coding
tasks.

We believe foundation models have evolved sufficiently to warrant adoption for many business
applications. When paired with appropriate infrastructure (few-shot prompting, guardrails, retrieval-
augmented generation, and evaluation frameworks), they offer compelling solutions to a wide range
of problems. Our experience suggests there’s no universal “best model”. We recommend implementing
your own benchmarking process focused on your specific use cases. When selecting a model,
consider factors beyond raw performance, such as pricing, reliability, data privacy requirements,
and whether on-premise deployment is needed. The recent emergence of high-quality open-source
models with permissive licensing (such as DeepSeek’s offerings) provides additional options for
organisations with specific security or deployment requirements.

Foundation models

31

Platforms

•	 Performance & capabilities (accuracy, speed, and domain-specific strengths)

•	 Total cost of ownership (API costs, compute resources, and integration)

•	 Deployment options & technical requirements (cloud, self-hosted, edge)

•	 Data privacy & compliance (regulatory, legal, and security implications)

•	 Integration & lifecycle management (context limitations, version control, updates)

•	 Vendor stability & support (roadmap alignment, documentation, community)

Foundation model providers feature comparison (September 2025)

Provider Open Weights Enterprise Focus Reasoning Models Edge Deployment Long Context Embedding API Agentic Workflows

Alibaba ✓ ✓ ✓ ✓

Anthropic ✓ ✓ ✓ ✓

AWS ✓ ✓ ✓

Cohere ✓ ✓ ✓ ✓ ✓

DeepSeek ✓ ✓ ✓

Google ✓ ✓ ✓ ✓ ✓

IBM ✓ ✓ ✓ ✓ ✓

Meta ✓ ✓

Mistral AI ✓ ✓ ✓ ✓ ✓

OpenAI ✓ ✓ ✓ ✓ ✓ ✓ ✓

Stability AI ✓ ✓ ✓

X ✓ ✓ ✓ ✓

Key considerations:

32

Platforms

•	 Open Weights: Models whose weights are publicly available for download and customisation

•	 Enterprise Focus: Strong emphasis on governance, security, and enterprise integration

•	 Reasoning Models: Specialised models for complex reasoning tasks like mathematics or step-by-
step problem solving

•	 Edge Deployment: Optimised for deployment on edge devices or resource-constrained
environments

•	 Long Context: Support for context windows of 250K tokens or more

•	 Embedding API: Dedicated text embedding models and APIs for generating vector representations
of text for semantic search and similarity tasks

•	 Agentic Workflows: Ability to autonomously plan, execute, and adapt multi-step tasks using
tools and external services. Goes beyond basic function calling to include complex workflow
orchestration, error handling, dynamic planning based on intermediate results, and completing
entire business processes without human intervention at each step

Data pipeline orchestration has become essential infrastructure for organisations managing
complex data workflows, particularly those supporting AI and machine learning initiatives. Whilst
transformation tools like dbt handle the “what” of data processing, orchestration platforms manage
the “when,” “how,” and “monitoring” of entire pipelines. We’ve placed these tools in the Adopt ring
because established organisations require systematic approaches to pipeline scheduling, dependency
management, and failure recovery.

Apache Airflow represents the established approach, focusing on task-based workflows with broad
integration support across cloud platforms. Its maturity and established ecosystem make it the
de facto standard in many enterprises, though teams often find the learning curve steep. Prefect
emphasises developer experience and dynamic workflow adaptation, allowing workflows to adapt to
changing conditions with minimal code modification. Teams report faster development cycles, though
fewer third-party integrations reflect the platform’s relative youth.

Dagster takes an asset-centric approach where data assets become first-class citizens, providing
built-in lineage tracking, data quality monitoring, and metadata management. This modern
architecture includes comprehensive developer tooling and observability, though the conceptual shift
from task-based thinking requires adjustment.

The choice between platforms typically depends on organisational context rather than technical
superiority. Established enterprises with diverse toolchains often gravitate towards Airflow’s
ecosystem breadth, whilst teams prioritising developer velocity may prefer Prefect’s flexibility.
Organisations with complex data lineage requirements increasingly consider Dagster’s asset-aware
approach. We recommend evaluating these tools against your specific integration complexity, team
expertise, and governance needs.

Data pipeline orchestration tools

Feature definitions

33

Platforms

The model hosting landscape has evolved far beyond simple API access, with distinct platforms
serving different organisational needs from rapid prototyping to enterprise production deployments.
Each platform’s approach to custom model deployment varies significantly, as organisations
increasingly require hosting for their own fine-tuned models alongside foundation model access.
We’ve placed these platforms in the Adopt ring because cloud-based model hosting has become the
de facto approach for most AI deployments, reducing operational overhead.

Enterprise production environments often gravitate towards established cloud providers such as
AWS Bedrock, Google Vertex AI, and Azure OpenAI Service. These platforms provide fine-tuning
capabilities with enterprise security features and integration with existing cloud infrastructure. Azure’s
hub-and-spoke architecture (separating model training from deployment environments) and Google’s
“Import Custom Model Weights” feature automate parts of custom model deployment, though the
processes often require cloud platform expertise and lengthy setup procedures.

Performance-critical applications are increasingly considering specialised providers such as Fireworks
AI and Together AI, which focus specifically on inference optimisation and support deployment of
custom fine-tuned models. These platforms offer API-based deployment workflows, with Together AI
supporting trillion-parameter model training and Fireworks providing fine-tuning services. However,
teams must evaluate whether simplified deployment compensates for reduced ecosystem integration
compared to major cloud providers.

Development teams and startups often favour platforms such as Replicate, Modal, and Hugging Face
Inference Endpoints, which emphasise deployment ease alongside flexible pricing. Hugging Face
supports deployment of 60,000+ models with minimal configuration, whilst Replicate’s Cog packaging
system and Modal’s Python-decorator approach reduce deployment steps. These platforms offer
direct paths from trained model to production API, though enterprise governance features remain
limited.

The choice between platforms reflects both organisational priorities and deployment complexity
tolerance. Teams requiring sophisticated fine-tuning workflows with enterprise compliance often find
major cloud providers necessary despite steeper learning curves. Performance-focused organisations
benefit from specialised platforms that balance custom model support with optimisation capabilities.
Development teams prioritising rapid iteration prefer platforms with simplified deployment processes,
accepting more limited enterprise tooling.

Cloud model hosting platforms

Trial
These platforms show promising potential with growing adoption and active development. While
they may not yet have the same maturity as Adopt platforms, they offer innovative approaches and
capabilities that make them worth exploring for forward-thinking teams.

Whilst experiment tracking tools like Weights & Biases and MLflow excel at managing the
development lifecycle, a distinct category of platforms has emerged to monitor AI systems in
production. These tools detect drift, performance degradation, and unexpected behaviour in
deployed models, issues that only surface when models encounter real-world data at scale. We’ve
placed these platforms in the Trial ring as organisations continue establishing best practices for
production AI monitoring.

Arize AI provides unified observability across traditional ML models and LLM applications,

Production AI monitoring platforms

34

Platforms

continuously tracking feature and embedding drift from training through to production. The platform
helps catch production issues before customer impact, though careful configuration is needed to
avoid alert fatigue. Evidently AI offers both an open-source library and cloud platform, with over 100
metrics covering data quality, drift, and bias monitoring. Its flexibility appeals to technical teams,
though setup requires more effort than managed alternatives.

WhyLabs takes a privacy-preserving approach, monitoring through statistical profiles rather than
raw data access. This enables massive scale monitoring whilst maintaining data security, particularly
valuable for regulated industries. The platform claims superior drift detection accuracy, though teams
must weigh privacy benefits against reduced debugging visibility.

Whilst there are many approaches to production AI monitoring, from custom metrics to manual spot
checks, these platforms deserve consideration from teams hosting models in production. They
integrate with existing SRE workflows through standard alerting channels (PagerDuty, Slack, email)
and provide dashboards that fit alongside traditional application monitoring. The key benefit is
proactive detection: organisations learn about performance degradation or prediction errors before
customer impact, rather than discovering issues through support tickets. For teams already practising
observability for their applications, adding AI-specific monitoring represents a natural extension of
existing operational practices.

2024 was the year when open weight LLMs (which are sometimes incorrectly referred to as ‘open
source’) from companies such as Meta and Deepseek reached maturity, with some even surpassing
flagship frontier models on certain tasks. We’ve placed open weight LLMs in the Trial ring because
they allow organisations to benefit from AI capabilities while maintaining control over their data and
deployment. These models have demonstrated impressive performance, particularly in specialised
domains when fine-tuned on specific tasks.

The key benefits include reduced operational costs compared to API-based services, full control
over model deployment and customisation, and the ability to run models in air-gapped environments
where data privacy is paramount. However, we’ve kept them in Trial because organisations need
considerable ML engineering expertise to deploy and maintain these models effectively, and the total
cost of ownership isn’t always lower than API-based alternatives when accounting for computational
resources and engineering time.

For certain use cases, the simplicity of a pay-per-use API integration outweighs the benefits and
greater control of hosting an open source LLM. Additionally, implementing appropriate security
controls, prompt injection protection, and data governance poses significant challenges.

Open weight LLMs

Visual workflow automation platforms have become increasingly capable orchestrators of AI-powered
business processes, allowing teams to build automated workflows through drag-and-drop interfaces
rather than traditional coding. We’ve placed these platforms in the Trial ring because whilst they
represent a maturing approach to democratising AI automation across organisations, the choice of
platform depends heavily on specific technical and organisational requirements.

Prominent platforms in this space include Zapier, n8n, Microsoft Power Automate, and Make.com.
Each serves different organisational needs and technical constraints. Zapier focuses on connecting
thousands of SaaS applications with AI capabilities, positioning itself towards business users seeking
rapid automation deployment. n8n distinguishes itself through flexibility for technical teams, offering
self-hosting options, open-source licensing, and extensive customisation through HTTP nodes and
JavaScript code injection. Microsoft Power Automate leverages native Office 365 integration and

AI-powered workflow automation platforms

35

Platforms

Assess
These platforms represent emerging or specialized services that may be worth considering for
specific use cases. While they offer interesting capabilities, they require careful evaluation due to
limited adoption, specialized requirements, or uncertain long-term viability.

enterprise-grade governance features, whilst Make.com emphasises sophisticated visual workflow
design with AI agent functionality.

These platforms attempt to bridge the gap between technical and business teams around AI
automation. They allow organisations to prototype AI-enhanced workflows, connect disparate
systems, and scale automation efforts without building custom integration layers. We’ve observed
common use cases including lead qualification using LLM analysis, automated content generation
and distribution, customer support ticket routing and responses, and data processing pipelines that
incorporate AI models for classification or enrichment tasks.

When evaluating these platforms, teams should consider their organisation’s technical capability,
data sovereignty requirements, integration ecosystem needs, and long-term scalability plans. Self-
hosted solutions like n8n offer maximum control and customisation but require technical expertise,
whilst SaaS offerings like Zapier reduce operational overhead but may have cost implications at scale.
Teams should also assess the platforms’ capability for error recovery, monitoring, and debugging
of AI-enhanced workflows, as AI components can fail in less predictable ways than traditional
integrations.

We’ve placed Galileo in the Assess ring of the Platforms radiant because it represents an interesting
approach to evaluating and improving AI model performance. It deserves attention but requires
careful consideration before being adopted more broadly.

Galileo offers a comprehensive platform spanning both development evaluation and production
monitoring of AI systems. During development, it provides tools for measuring and refining model
performance, with specialised capabilities for AI agent evaluation and comprehensive testing
frameworks. In production, the platform offers real-time monitoring with low-latency guardrails and
hallucination detection. Our committee has noted that teams using the platform report better insights
into how their AI systems perform across different scenarios and edge cases, from initial development
through to production deployment.

We recommend assessing this platform, particularly if your organisation is developing custom
models or fine-tuning existing ones, as the insights it provides could significantly improve model
quality. However, we’ve stopped short of recommending it for trial by all teams, as its value varies
depending on your level of AI maturity and your specific use cases. Organisations with simpler AI
implementations, or those primarily using out-of-the-box models, may find less immediate benefit.
The platform is likely to offer the most value to organisations that are actively developing or fine-
tuning models, or deploying AI in high-stakes environments where consistent performance is critical.
Teams should also consider whether they have the technical resources required to act effectively on
the insights the platform provides.

Galileo

36

Platforms

We’ve placed Kubeflow in the Assess ring of our Platforms quadrant. This open-source machine
learning platform, built on Kubernetes, offers a comprehensive solution for managing ML workflows,
but it requires careful evaluation before widespread adoption.

Kubeflow is gaining traction among data science and MLOps teams looking to standardise their
machine learning workflows. Its strength lies in combining Kubernetes’ orchestration capabilities with
ML-specific tools: Pipelines for workflow automation, Katib for hyperparameter tuning, and KFServing
for model deployment. This integrated approach helps bridge the gap between data scientists and
operations teams, addressing one of the core challenges in operationalising ML models.

However, several factors keep Kubeflow in our Assess ring. First, implementing Kubeflow demands
significant expertise in both Kubernetes and ML engineering, a specialised skill set that remains
relatively uncommon. Second, while the platform is maturing, we’ve observed that many organisations
struggle with its complexity during initial setup and ongoing maintenance. Teams often report a steep
learning curve before realising tangible benefits.

Organisations with established ML practices and existing Kubernetes expertise should consider
assessing Kubeflow, particularly if they’re facing challenges with ML model deployment, experiment
reproducibility or resource utilisation. The platform is especially suited to enterprises managing
multiple ML models in production that require systematic oversight across their lifecycle. Smaller
teams, or those earlier in their ML journey, may want to explore simpler alternatives first or consider
managed options like Vertex AI Pipelines, which abstract away some of the infrastructure complexity.

Kubeflow

Hold
These platforms are not recommended for new projects due to declining relevance, better
alternatives, or limited long-term viability. While some may still have niche applications, they generally
represent approaches that have been superseded by more effective solutions.

We’ve placed “Building against vendor-specific APIs” in the Hold ring of the Platforms quadrant
because tightly coupling your applications to vendor-specific LLM APIs poses significant business
risks in this rapidly evolving landscape.

The foundation model ecosystem is changing at breakneck speed, with model capabilities, pricing
and even entire companies shifting dramatically from month to month. Organisations that build
directly against OpenAI, Anthropic or other proprietary APIs often find themselves locked in, facing
painful migrations when a better or more cost-effective model emerges. We’ve seen teams invest
substantial engineering effort into rewriting API integrations after discovering their chosen vendor has
been outperformed or has significantly increased its pricing.

Instead, we recommend using abstraction libraries that provide a common interface to multiple LLM
providers. Libraries such as AISuite or Simon Willison’s LLM CLI let you switch between different
models with minimal code changes, sometimes just a configuration update. These libraries handle
the nuances of different vendor APIs, managing context windows, token limitations and provider-
specific parameters behind a consistent interface. This approach preserves your flexibility to take
advantage of new capabilities or improved pricing as the market evolves, while significantly reducing
the engineering effort required to switch between models.

These abstractions do add some complexity and may occasionally limit access to vendor-specific

Building against vendor-specific APIs

37

Platforms

features, but in our view, the protection against vendor lock-in far outweighs these drawbacks in most
cases. As the foundation model market continues to consolidate, maintaining the flexibility to adapt
quickly will be crucial for both cost management and staying competitive.

38

Thank you

The information in this document is provided as is
and does not warrant the accuracy, completeness
and fitness for a particular purpose. In no event
shall Grid Dynamics Holdings, Inc be liable for any
damages whatsoever arising from your reliance on
any information contained in this document. Except
as permitted under the Copyright Act no part of the
document may be reproduced, transmitted, stored
in a retrieval system, or translated into any human
or computer language in any form by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise without the expressed permission
of Grid Dynamics Holdings, Inc.

Contributions
This radar represents our current viewpoint and will
be updated regularly. We welcome feedback and
suggestions from the community, you can reach us on
LinkedIn, BlueSky and via email. Each technology entry
includes detailed reasoning for its placement, helping
you make informed decisions for your AI projects.

https://www.linkedin.com/company/juxt-juxt-pro-/posts/?feedView=all
https://bsky.app/profile/juxt.pro
mailto:info%40juxt.pro?subject=

